/* * linux/drivers/ide/ide-dma.c Version 4.13 May 21, 2003 * * Copyright (c) 1999-2000 Andre Hedrick * May be copied or modified under the terms of the GNU General Public License * * Portions Copyright Red Hat 2003 */ /* * Special Thanks to Mark for his Six years of work. * * Copyright (c) 1995-1998 Mark Lord * May be copied or modified under the terms of the GNU General Public License */ /* * This module provides support for the bus-master IDE DMA functions * of various PCI chipsets, including the Intel PIIX (i82371FB for * the 430 FX chipset), the PIIX3 (i82371SB for the 430 HX/VX and * 440 chipsets), and the PIIX4 (i82371AB for the 430 TX chipset) * ("PIIX" stands for "PCI ISA IDE Xcellerator"). * * Pretty much the same code works for other IDE PCI bus-mastering chipsets. * * DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies). * * By default, DMA support is prepared for use, but is currently enabled only * for drives which already have DMA enabled (UltraDMA or mode 2 multi/single), * or which are recognized as "good" (see table below). Drives with only mode0 * or mode1 (multi/single) DMA should also work with this chipset/driver * (eg. MC2112A) but are not enabled by default. * * Use "hdparm -i" to view modes supported by a given drive. * * The hdparm-3.5 (or later) utility can be used for manually enabling/disabling * DMA support, but must be (re-)compiled against this kernel version or later. * * To enable DMA, use "hdparm -d1 /dev/hd?" on a per-drive basis after booting. * If problems arise, ide.c will disable DMA operation after a few retries. * This error recovery mechanism works and has been extremely well exercised. * * IDE drives, depending on their vintage, may support several different modes * of DMA operation. The boot-time modes are indicated with a "*" in * the "hdparm -i" listing, and can be changed with *knowledgeable* use of * the "hdparm -X" feature. There is seldom a need to do this, as drives * normally power-up with their "best" PIO/DMA modes enabled. * * Testing has been done with a rather extensive number of drives, * with Quantum & Western Digital models generally outperforming the pack, * and Fujitsu & Conner (and some Seagate which are really Conner) drives * showing more lackluster throughput. * * Keep an eye on /var/adm/messages for "DMA disabled" messages. * * Some people have reported trouble with Intel Zappa motherboards. * This can be fixed by upgrading the AMI BIOS to version 1.00.04.BS0, * available from ftp://ftp.intel.com/pub/bios/10004bs0.exe * (thanks to Glen Morrell for researching this). * * Thanks to "Christopher J. Reimer" for * fixing the problem with the BIOS on some Acer motherboards. * * Thanks to "Benoit Poulot-Cazajous" for testing * "TX" chipset compatibility and for providing patches for the "TX" chipset. * * Thanks to Christian Brunner for taking a good first crack * at generic DMA -- his patches were referred to when preparing this code. * * Most importantly, thanks to Robert Bringman * for supplying a Promise UDMA board & WD UDMA drive for this work! * * And, yes, Intel Zappa boards really *do* use both PIIX IDE ports. * * ATA-66/100 and recovery functions, I forgot the rest...... * */ #include #define __NO_VERSION__ #include #include #include #include #include #include #include #include #include #include #include #include #define CONFIG_IDEDMA_NEW_DRIVE_LISTINGS #ifdef CONFIG_IDEDMA_NEW_DRIVE_LISTINGS struct drive_list_entry { char * id_model; char * id_firmware; }; struct drive_list_entry drive_whitelist [] = { { "Micropolis 2112A" , "ALL" }, { "CONNER CTMA 4000" , "ALL" }, { "CONNER CTT8000-A" , "ALL" }, { "ST34342A" , "ALL" }, { 0 , 0 } }; struct drive_list_entry drive_blacklist [] = { { "WDC AC11000H" , "ALL" }, { "WDC AC22100H" , "ALL" }, { "WDC AC32500H" , "ALL" }, { "WDC AC33100H" , "ALL" }, { "WDC AC31600H" , "ALL" }, { "WDC AC32100H" , "24.09P07" }, { "WDC AC23200L" , "21.10N21" }, { "Compaq CRD-8241B" , "ALL" }, { "CRD-8400B" , "ALL" }, { "CRD-8480B", "ALL" }, { "CRD-8480C", "ALL" }, { "CRD-8482B", "ALL" }, { "CRD-84" , "ALL" }, { "SanDisk SDP3B" , "ALL" }, { "SanDisk SDP3B-64" , "ALL" }, { "SANYO CD-ROM CRD" , "ALL" }, { "HITACHI CDR-8" , "ALL" }, { "HITACHI CDR-8335" , "ALL" }, { "HITACHI CDR-8435" , "ALL" }, { "Toshiba CD-ROM XM-6202B" , "ALL" }, { "CD-532E-A" , "ALL" }, { "E-IDE CD-ROM CR-840", "ALL" }, { "CD-ROM Drive/F5A", "ALL" }, { "RICOH CD-R/RW MP7083A", "ALL" }, { "WPI CDD-820", "ALL" }, { "SAMSUNG CD-ROM SC-148C", "ALL" }, { "SAMSUNG CD-ROM SC-148F", "ALL" }, { "SAMSUNG CD-ROM SC", "ALL" }, { "SanDisk SDP3B-64" , "ALL" }, { "SAMSUNG CD-ROM SN-124", "ALL" }, { "PLEXTOR CD-R PX-W8432T", "ALL" }, { "ATAPI CD-ROM DRIVE 40X MAXIMUM", "ALL" }, { "_NEC DV5800A", "ALL" }, { 0 , 0 } }; /** * in_drive_list - look for drive in black/white list * @id: drive identifier * @drive_table: list to inspect * * Look for a drive in the blacklist and the whitelist tables * Returns 1 if the drive is found in the table. */ static int in_drive_list(struct hd_driveid *id, struct drive_list_entry * drive_table) { for ( ; drive_table->id_model ; drive_table++) if ((!strcmp(drive_table->id_model, id->model)) && ((strstr(drive_table->id_firmware, id->fw_rev)) || (!strcmp(drive_table->id_firmware, "ALL")))) return 1; return 0; } #else /* !CONFIG_IDEDMA_NEW_DRIVE_LISTINGS */ /* * good_dma_drives() lists the model names (from "hdparm -i") * of drives which do not support mode2 DMA but which are * known to work fine with this interface under Linux. */ const char *good_dma_drives[] = {"Micropolis 2112A", "CONNER CTMA 4000", "CONNER CTT8000-A", "ST34342A", /* for Sun Ultra */ NULL}; /* * bad_dma_drives() lists the model names (from "hdparm -i") * of drives which supposedly support (U)DMA but which are * known to corrupt data with this interface under Linux. * * This is an empirical list. Its generated from bug reports. That means * while it reflects actual problem distributions it doesn't answer whether * the drive or the controller, or cabling, or software, or some combination * thereof is the fault. If you don't happen to agree with the kernel's * opinion of your drive - use hdparm to turn DMA on. */ const char *bad_dma_drives[] = {"WDC AC11000H", "WDC AC22100H", "WDC AC32100H", "WDC AC32500H", "WDC AC33100H", "WDC AC31600H", NULL}; #endif /* CONFIG_IDEDMA_NEW_DRIVE_LISTINGS */ /** * ide_dma_intr - IDE DMA interrupt handler * @drive: the drive the interrupt is for * * Handle an interrupt completing a read/write DMA transfer on an * IDE device */ ide_startstop_t ide_dma_intr (ide_drive_t *drive) { u8 stat = 0, dma_stat = 0; int i; dma_stat = HWIF(drive)->ide_dma_end(drive); stat = HWIF(drive)->INB(IDE_STATUS_REG); /* get drive status */ if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) { if (!dma_stat) { struct request *rq = HWGROUP(drive)->rq; // rq = HWGROUP(drive)->rq; for (i = rq->nr_sectors; i > 0;) { i -= rq->current_nr_sectors; DRIVER(drive)->end_request(drive, 1); } return ide_stopped; } printk("%s: dma_intr: bad DMA status (dma_stat=%x)\n", drive->name, dma_stat); } return DRIVER(drive)->error(drive, "dma_intr", stat); } EXPORT_SYMBOL_GPL(ide_dma_intr); /** * ide_build_sglist - map IDE scatter gather for DMA I/O * @hwif: the interface to build the DMA table for * @rq: the request holding the sg list * @ddir: data direction * * Perform the PCI mapping magic neccessary to access the source or * target buffers of a request via PCI DMA. The lower layers of the * kernel provide the neccessary cache management so that we can * operate in a portable fashion */ static int ide_build_sglist (ide_hwif_t *hwif, struct request *rq, int ddir) { struct buffer_head *bh; struct scatterlist *sg = hwif->sg_table; unsigned long lastdataend = ~0UL; int nents = 0; if (hwif->sg_dma_active) BUG(); bh = rq->bh; do { int contig = 0; if (bh->b_page) { if (bh_phys(bh) == lastdataend) contig = 1; } else { if ((unsigned long) bh->b_data == lastdataend) contig = 1; } if (contig) { sg[nents - 1].length += bh->b_size; lastdataend += bh->b_size; continue; } if (nents >= PRD_ENTRIES) return 0; memset(&sg[nents], 0, sizeof(*sg)); if (bh->b_page) { sg[nents].page = bh->b_page; sg[nents].offset = bh_offset(bh); lastdataend = bh_phys(bh) + bh->b_size; } else { if ((unsigned long) bh->b_data < PAGE_SIZE) BUG(); sg[nents].address = bh->b_data; lastdataend = (unsigned long) bh->b_data + bh->b_size; } sg[nents].length = bh->b_size; nents++; } while ((bh = bh->b_reqnext) != NULL); if(nents == 0) BUG(); hwif->sg_dma_direction = ddir; return pci_map_sg(hwif->pci_dev, sg, nents, ddir); } /** * ide_raw_build_sglist - map IDE scatter gather for DMA * @hwif: the interface to build the DMA table for * @rq: the request holding the sg list * * Perform the PCI mapping magic neccessary to access the source or * target buffers of a taskfile request via PCI DMA. The lower layers * of the kernel provide the neccessary cache management so that we can * operate in a portable fashion */ static int ide_raw_build_sglist (ide_hwif_t *hwif, struct request *rq) { struct scatterlist *sg = hwif->sg_table; int nents = 0; ide_task_t *args = rq->special; u8 *virt_addr = rq->buffer; int sector_count = rq->nr_sectors; if (args->command_type == IDE_DRIVE_TASK_RAW_WRITE) hwif->sg_dma_direction = PCI_DMA_TODEVICE; else hwif->sg_dma_direction = PCI_DMA_FROMDEVICE; #if 1 if (sector_count > 128) { memset(&sg[nents], 0, sizeof(*sg)); sg[nents].address = virt_addr; sg[nents].length = 128 * SECTOR_SIZE; nents++; virt_addr = virt_addr + (128 * SECTOR_SIZE); sector_count -= 128; } memset(&sg[nents], 0, sizeof(*sg)); sg[nents].address = virt_addr; sg[nents].length = sector_count * SECTOR_SIZE; nents++; #else while (sector_count > 128) { memset(&sg[nents], 0, sizeof(*sg)); sg[nents].address = virt_addr; sg[nents].length = 128 * SECTOR_SIZE; nents++; virt_addr = virt_addr + (128 * SECTOR_SIZE); sector_count -= 128; }; memset(&sg[nents], 0, sizeof(*sg)); sg[nents].address = virt_addr; sg[nents].length = sector_count * SECTOR_SIZE; nents++; #endif return pci_map_sg(hwif->pci_dev, sg, nents, hwif->sg_dma_direction); } /** * ide_build_dmatable - build IDE DMA table * * ide_build_dmatable() prepares a dma request. We map the command * to get the pci bus addresses of the buffers and then build up * the PRD table that the IDE layer wants to be fed. The code * knows about the 64K wrap bug in the CS5530. * * Returns 0 if all went okay, returns 1 otherwise. * May also be invoked from trm290.c */ int ide_build_dmatable (ide_drive_t *drive, struct request *rq, int ddir) { ide_hwif_t *hwif = HWIF(drive); unsigned int *table = hwif->dmatable_cpu; unsigned int is_trm290 = (hwif->chipset == ide_trm290) ? 1 : 0; unsigned int count = 0; int i; struct scatterlist *sg; if (rq->cmd == IDE_DRIVE_TASKFILE) hwif->sg_nents = i = ide_raw_build_sglist(hwif, rq); else hwif->sg_nents = i = ide_build_sglist(hwif, rq, ddir); if (!i) return 0; sg = hwif->sg_table; while (i && sg_dma_len(sg)) { u32 cur_addr; u32 cur_len; cur_addr = sg_dma_address(sg); cur_len = sg_dma_len(sg); /* * Fill in the dma table, without crossing any 64kB boundaries. * Most hardware requires 16-bit alignment of all blocks, * but the trm290 requires 32-bit alignment. */ while (cur_len) { if (count++ >= PRD_ENTRIES) { printk("%s: DMA table too small\n", drive->name); goto use_pio_instead; } else { u32 xcount, bcount = 0x10000 - (cur_addr & 0xffff); if (bcount > cur_len) bcount = cur_len; *table++ = cpu_to_le32(cur_addr); xcount = bcount & 0xffff; if (is_trm290) xcount = ((xcount >> 2) - 1) << 16; if (xcount == 0x0000) { /* * Most chipsets correctly interpret a length of 0x0000 as 64KB, * but at least one (e.g. CS5530) misinterprets it as zero (!). * So here we break the 64KB entry into two 32KB entries instead. */ if (count++ >= PRD_ENTRIES) { printk("%s: DMA table too small\n", drive->name); goto use_pio_instead; } *table++ = cpu_to_le32(0x8000); *table++ = cpu_to_le32(cur_addr + 0x8000); xcount = 0x8000; } *table++ = cpu_to_le32(xcount); cur_addr += bcount; cur_len -= bcount; } } sg++; i--; } if (count) { if (!is_trm290) *--table |= cpu_to_le32(0x80000000); return count; } printk("%s: empty DMA table?\n", drive->name); use_pio_instead: pci_unmap_sg(hwif->pci_dev, hwif->sg_table, hwif->sg_nents, hwif->sg_dma_direction); hwif->sg_dma_active = 0; return 0; /* revert to PIO for this request */ } EXPORT_SYMBOL_GPL(ide_build_dmatable); /** * ide_destroy_dmatable - clean up DMA mapping * @drive: The drive to unmap * * Teardown mappings after DMA has completed. This must be called * after the completion of each use of ide_build_dmatable and before * the next use of ide_build_dmatable. Failure to do so will cause * an oops as only one mapping can be live for each target at a given * time. */ void ide_destroy_dmatable (ide_drive_t *drive) { struct pci_dev *dev = HWIF(drive)->pci_dev; struct scatterlist *sg = HWIF(drive)->sg_table; int nents = HWIF(drive)->sg_nents; pci_unmap_sg(dev, sg, nents, HWIF(drive)->sg_dma_direction); HWIF(drive)->sg_dma_active = 0; } EXPORT_SYMBOL_GPL(ide_destroy_dmatable); /** * config_drive_for_dma - attempt to activate IDE DMA * @drive: the drive to place in DMA mode * * If the drive supports at least mode 2 DMA or UDMA of any kind * then attempt to place it into DMA mode. Drives that are known to * support DMA but predate the DMA properties or that are known * to have DMA handling bugs are also set up appropriately based * on the good/bad drive lists. */ static int config_drive_for_dma (ide_drive_t *drive) { struct hd_driveid *id = drive->id; ide_hwif_t *hwif = HWIF(drive); if ((id->capability & 1) && hwif->autodma) { /* Consult the list of known "bad" drives */ if (hwif->ide_dma_bad_drive(drive)) return hwif->ide_dma_off(drive); /* * Enable DMA on any drive that has * UltraDMA (mode 0/1/2/3/4/5/6) enabled */ if ((id->field_valid & 4) && ((id->dma_ultra >> 8) & 0x7f)) return hwif->ide_dma_on(drive); /* * Enable DMA on any drive that has mode2 DMA * (multi or single) enabled */ if (id->field_valid & 2) /* regular DMA */ if ((id->dma_mword & 0x404) == 0x404 || (id->dma_1word & 0x404) == 0x404) return hwif->ide_dma_on(drive); /* Consult the list of known "good" drives */ if (hwif->ide_dma_good_drive(drive)) return hwif->ide_dma_on(drive); } // if (hwif->tuneproc != NULL) hwif->tuneproc(drive, 255); return hwif->ide_dma_off_quietly(drive); } /** * dma_timer_expiry - handle a DMA timeout * @drive: Drive that timed out * * An IDE DMA transfer timed out. In the event of an error we ask * the driver to resolve the problem, if a DMA transfer is still * in progress we continue to wait (arguably we need to add a * secondary 'I dont care what the drive thinks' timeout here) * Finally if we have an interrupt we let it complete the I/O. * But only one time - we clear expiry and if it's still not * completed after WAIT_CMD, we error and retry in PIO. * This can occur if an interrupt is lost or due to hang or bugs. */ static int dma_timer_expiry (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 dma_stat = hwif->INB(hwif->dma_status); printk(KERN_WARNING "%s: dma_timer_expiry: dma status == 0x%02x\n", drive->name, dma_stat); if ((dma_stat & 0x18) == 0x18) /* BUSY Stupid Early Timer !! */ return WAIT_CMD; /* * Clear the expiry handler in case we decide to wait more, * next time timer expires it is an error */ HWGROUP(drive)->expiry = NULL; /* 1 dmaing, 2 error, 4 intr */ if (dma_stat & 2) /* ERROR */ return -1; if (dma_stat & 1) /* DMAing */ return WAIT_CMD; if (dma_stat & 4) /* Got an Interrupt */ return WAIT_CMD; return 0; /* Unknown status -- reset the bus */ } /** * __ide_dma_host_off - Generic DMA kill * @drive: drive to control * * Perform the generic IDE controller DMA off operation. This * works for most IDE bus mastering controllers */ int __ide_dma_host_off (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 unit = (drive->select.b.unit & 0x01); u8 dma_stat = hwif->INB(hwif->dma_status); hwif->OUTB((dma_stat & ~(1<<(5+unit))), hwif->dma_status); return 0; } EXPORT_SYMBOL(__ide_dma_host_off); /** * __ide_dma_host_off_quietly - Generic DMA kill * @drive: drive to control * * Turn off the current DMA on this IDE controller. */ int __ide_dma_off_quietly (ide_drive_t *drive) { drive->using_dma = 0; ide_toggle_bounce(drive, 0); return HWIF(drive)->ide_dma_host_off(drive); } EXPORT_SYMBOL(__ide_dma_off_quietly); /** * __ide_dma_host_off - Generic DMA kill * @drive: drive to control * * Turn off the current DMA on this IDE controller. Inform the * user that DMA has been disabled. */ int __ide_dma_off (ide_drive_t *drive) { printk(KERN_INFO "%s: DMA disabled\n", drive->name); return HWIF(drive)->ide_dma_off_quietly(drive); } EXPORT_SYMBOL(__ide_dma_off); /** * __ide_dma_host_on - Enable DMA on a host * @drive: drive to enable for DMA * * Enable DMA on an IDE controller following generic bus mastering * IDE controller behaviour */ int __ide_dma_host_on (ide_drive_t *drive) { if (drive->using_dma) { ide_hwif_t *hwif = HWIF(drive); u8 unit = (drive->select.b.unit & 0x01); u8 dma_stat = hwif->INB(hwif->dma_status); hwif->OUTB((dma_stat|(1<<(5+unit))), hwif->dma_status); return 0; } return 1; } EXPORT_SYMBOL(__ide_dma_host_on); /** * __ide_dma_on - Enable DMA on a device * @drive: drive to enable DMA on * * Enable IDE DMA for a device on this IDE controller. */ int __ide_dma_on (ide_drive_t *drive) { drive->using_dma = 1; ide_toggle_bounce(drive, 1); return HWIF(drive)->ide_dma_host_on(drive); } EXPORT_SYMBOL(__ide_dma_on); /** * __ide_dma_check - check DMA setup * @drive: drive to check * * Don't use - due for extermination */ int __ide_dma_check (ide_drive_t *drive) { return config_drive_for_dma(drive); } EXPORT_SYMBOL(__ide_dma_check); int __ide_dma_read (ide_drive_t *drive /*, struct request *rq */) { ide_hwif_t *hwif = HWIF(drive); struct request *rq = HWGROUP(drive)->rq; // ide_task_t *args = rq->special; unsigned int reading = 1 << 3; unsigned int count = 0; u8 dma_stat = 0, lba48 = (drive->addressing == 1) ? 1 : 0; task_ioreg_t command = WIN_NOP; if (!(count = ide_build_dmatable(drive, rq, PCI_DMA_FROMDEVICE))) /* try PIO instead of DMA */ return 1; /* PRD table */ hwif->OUTL(hwif->dmatable_dma, hwif->dma_prdtable); /* specify r/w */ hwif->OUTB(reading, hwif->dma_command); /* read dma_status for INTR & ERROR flags */ dma_stat = hwif->INB(hwif->dma_status); /* clear INTR & ERROR flags */ hwif->OUTB(dma_stat|6, hwif->dma_status); drive->waiting_for_dma = 1; if (drive->media != ide_disk) return 0; /* * FIX ME to use only ACB ide_task_t args Struct */ #if 0 { ide_task_t *args = rq->special; command = args->tfRegister[IDE_COMMAND_OFFSET]; } #else command = (lba48) ? WIN_READDMA_EXT : WIN_READDMA; if (rq->cmd == IDE_DRIVE_TASKFILE) { ide_task_t *args = rq->special; command = args->tfRegister[IDE_COMMAND_OFFSET]; } #endif /* issue cmd to drive */ ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, dma_timer_expiry); return HWIF(drive)->ide_dma_count(drive); } EXPORT_SYMBOL(__ide_dma_read); int __ide_dma_write (ide_drive_t *drive /*, struct request *rq */) { ide_hwif_t *hwif = HWIF(drive); struct request *rq = HWGROUP(drive)->rq; // ide_task_t *args = rq->special; unsigned int reading = 0; unsigned int count = 0; u8 dma_stat = 0, lba48 = (drive->addressing == 1) ? 1 : 0; task_ioreg_t command = WIN_NOP; if (!(count = ide_build_dmatable(drive, rq, PCI_DMA_TODEVICE))) /* try PIO instead of DMA */ return 1; /* PRD table */ hwif->OUTL(hwif->dmatable_dma, hwif->dma_prdtable); /* specify r/w */ hwif->OUTB(reading, hwif->dma_command); /* read dma_status for INTR & ERROR flags */ dma_stat = hwif->INB(hwif->dma_status); /* clear INTR & ERROR flags */ hwif->OUTB(dma_stat|6, hwif->dma_status); drive->waiting_for_dma = 1; if (drive->media != ide_disk) return 0; /* * FIX ME to use only ACB ide_task_t args Struct */ #if 0 { ide_task_t *args = rq->special; command = args->tfRegister[IDE_COMMAND_OFFSET]; } #else command = (lba48) ? WIN_WRITEDMA_EXT : WIN_WRITEDMA; if (rq->cmd == IDE_DRIVE_TASKFILE) { ide_task_t *args = rq->special; command = args->tfRegister[IDE_COMMAND_OFFSET]; } #endif /* issue cmd to drive */ ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, dma_timer_expiry); return HWIF(drive)->ide_dma_count(drive); } EXPORT_SYMBOL(__ide_dma_write); int __ide_dma_begin (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 dma_cmd = hwif->INB(hwif->dma_command); /* Note that this is done *after* the cmd has * been issued to the drive, as per the BM-IDE spec. * The Promise Ultra33 doesn't work correctly when * we do this part before issuing the drive cmd. */ /* start DMA */ hwif->OUTB(dma_cmd|1, hwif->dma_command); return 0; } EXPORT_SYMBOL(__ide_dma_begin); /* returns 1 on error, 0 otherwise */ int __ide_dma_end (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 dma_stat = 0, dma_cmd = 0; drive->waiting_for_dma = 0; /* get dma_command mode */ dma_cmd = hwif->INB(hwif->dma_command); /* stop DMA */ hwif->OUTB(dma_cmd&~1, hwif->dma_command); /* get DMA status */ dma_stat = hwif->INB(hwif->dma_status); /* clear the INTR & ERROR bits */ hwif->OUTB(dma_stat|6, hwif->dma_status); /* purge DMA mappings */ ide_destroy_dmatable(drive); /* verify good DMA status */ return (dma_stat & 7) != 4 ? (0x10 | dma_stat) : 0; } EXPORT_SYMBOL(__ide_dma_end); /* returns 1 if dma irq issued, 0 otherwise */ int __ide_dma_test_irq (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 dma_stat = hwif->INB(hwif->dma_status); #if 0 /* do not set unless you know what you are doing */ if (dma_stat & 4) { u8 stat = hwif->INB(IDE_STATUS_REG); hwif->OUTB(hwif->dma_status, dma_stat & 0xE4); } #endif /* return 1 if INTR asserted */ if ((dma_stat & 4) == 4) return 1; if (!drive->waiting_for_dma) printk(KERN_WARNING "%s: (%s) called while not waiting\n", drive->name, __FUNCTION__); #if 0 drive->waiting_for_dma++; #endif return 0; } EXPORT_SYMBOL(__ide_dma_test_irq); int __ide_dma_bad_drive (ide_drive_t *drive) { struct hd_driveid *id = drive->id; #ifdef CONFIG_IDEDMA_NEW_DRIVE_LISTINGS int blacklist = in_drive_list(id, drive_blacklist); if (blacklist) { printk("%s: Disabling (U)DMA for %s\n", drive->name, id->model); return(blacklist); } #else /* !CONFIG_IDEDMA_NEW_DRIVE_LISTINGS */ const char **list; /* Consult the list of known "bad" drives */ list = bad_dma_drives; while (*list) { if (!strcmp(*list++,id->model)) { printk("%s: Disabling (U)DMA for %s\n", drive->name, id->model); return 1; } } #endif /* CONFIG_IDEDMA_NEW_DRIVE_LISTINGS */ return 0; } EXPORT_SYMBOL(__ide_dma_bad_drive); int __ide_dma_good_drive (ide_drive_t *drive) { struct hd_driveid *id = drive->id; #ifdef CONFIG_IDEDMA_NEW_DRIVE_LISTINGS return in_drive_list(id, drive_whitelist); #else /* !CONFIG_IDEDMA_NEW_DRIVE_LISTINGS */ const char **list; /* Consult the list of known "good" drives */ list = good_dma_drives; while (*list) { if (!strcmp(*list++,id->model)) return 1; } #endif /* CONFIG_IDEDMA_NEW_DRIVE_LISTINGS */ return 0; } EXPORT_SYMBOL(__ide_dma_good_drive); /* * Used for HOST FIFO counters for VDMA * PIO over DMA, effective ATA-Bridge operator. */ int __ide_dma_count (ide_drive_t *drive) { return HWIF(drive)->ide_dma_begin(drive); } EXPORT_SYMBOL(__ide_dma_count); int __ide_dma_verbose (ide_drive_t *drive) { struct hd_driveid *id = drive->id; ide_hwif_t *hwif = HWIF(drive); if (id->field_valid & 4) { if ((id->dma_ultra >> 8) && (id->dma_mword >> 8)) { printk(", BUG DMA OFF"); return hwif->ide_dma_off_quietly(drive); } if (id->dma_ultra & ((id->dma_ultra >> 8) & hwif->ultra_mask)) { if (((id->dma_ultra >> 11) & 0x1F) && eighty_ninty_three(drive)) { if ((id->dma_ultra >> 15) & 1) { printk(", UDMA(mode 7)"); } else if ((id->dma_ultra >> 14) & 1) { printk(", UDMA(133)"); } else if ((id->dma_ultra >> 13) & 1) { printk(", UDMA(100)"); } else if ((id->dma_ultra >> 12) & 1) { printk(", UDMA(66)"); } else if ((id->dma_ultra >> 11) & 1) { printk(", UDMA(44)"); } else goto mode_two; } else { mode_two: if ((id->dma_ultra >> 10) & 1) { printk(", UDMA(33)"); } else if ((id->dma_ultra >> 9) & 1) { printk(", UDMA(25)"); } else if ((id->dma_ultra >> 8) & 1) { printk(", UDMA(16)"); } } } else { printk(", (U)DMA"); /* Can be BIOS-enabled! */ } } else if (id->field_valid & 2) { if ((id->dma_mword >> 8) && (id->dma_1word >> 8)) { printk(", BUG DMA OFF"); return hwif->ide_dma_off_quietly(drive); } printk(", DMA"); } else if (id->field_valid & 1) { printk(", BUG"); } return 1; } EXPORT_SYMBOL(__ide_dma_verbose); /** * __ide_dma_retune - default retune handler * @drive: drive to retune * * Default behaviour when we decide to return the IDE DMA setup. * The default behaviour is "we don't" */ int __ide_dma_retune (ide_drive_t *drive) { printk(KERN_WARNING "%s: chipset supported call only\n", __FUNCTION__); return 1; } EXPORT_SYMBOL(__ide_dma_retune); int __ide_dma_lostirq (ide_drive_t *drive) { printk("%s: DMA interrupt recovery\n", drive->name); return 1; } EXPORT_SYMBOL(__ide_dma_lostirq); int __ide_dma_timeout (ide_drive_t *drive) { printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name); if (HWIF(drive)->ide_dma_test_irq(drive)) return 0; return HWIF(drive)->ide_dma_end(drive); } EXPORT_SYMBOL(__ide_dma_timeout); /* * Needed for allowing full modular support of ide-driver */ int ide_release_dma_engine (ide_hwif_t *hwif) { if (hwif->dmatable_cpu) { pci_free_consistent(hwif->pci_dev, PRD_ENTRIES * PRD_BYTES, hwif->dmatable_cpu, hwif->dmatable_dma); hwif->dmatable_cpu = NULL; } if (hwif->sg_table) { kfree(hwif->sg_table); hwif->sg_table = NULL; } return 1; } int ide_release_mmio_dma (ide_hwif_t *hwif) { if ((hwif->dma_extra) && (hwif->channel == 0)) release_mem_region((hwif->dma_base + 16), hwif->dma_extra); release_mem_region(hwif->dma_base, 8); if (hwif->dma_base2) release_mem_region(hwif->dma_base, 8); return 1; } int ide_release_iomio_dma (ide_hwif_t *hwif) { if ((hwif->dma_extra) && (hwif->channel == 0)) release_region((hwif->dma_base + 16), hwif->dma_extra); release_region(hwif->dma_base, 8); if (hwif->dma_base2) release_region(hwif->dma_base, 8); return 1; } /* * Needed for allowing full modular support of ide-driver */ int ide_release_dma (ide_hwif_t *hwif) { if (hwif->chipset == ide_etrax100) return 1; ide_release_dma_engine(hwif); if (hwif->mmio==2) return 1; if (hwif->mmio) return ide_release_mmio_dma(hwif); return ide_release_iomio_dma(hwif); } int ide_allocate_dma_engine (ide_hwif_t *hwif) { hwif->dmatable_cpu = pci_alloc_consistent(hwif->pci_dev, PRD_ENTRIES * PRD_BYTES, &hwif->dmatable_dma); hwif->sg_table = kmalloc(sizeof(struct scatterlist) * PRD_ENTRIES, GFP_KERNEL); if ((hwif->dmatable_cpu) && (hwif->sg_table)) return 0; printk(KERN_ERR "%s: -- Error, unable to allocate%s%s table(s).\n", (hwif->dmatable_cpu == NULL) ? " CPU" : "", (hwif->sg_table == NULL) ? " SG DMA" : " DMA", hwif->cds->name); ide_release_dma_engine(hwif); return 1; } int ide_mapped_mmio_dma (ide_hwif_t *hwif, unsigned long base, unsigned int ports) { printk(KERN_INFO " %s: MMIO-DMA ", hwif->name); hwif->dma_base = base; if ((hwif->cds->extra) && (hwif->channel == 0)) hwif->dma_extra = hwif->cds->extra; /* There is an issue to watch here. The master might not be registered because the BIOS disabled it. Eventually this should be fixed by always registering the mate */ if(hwif->mate == NULL) hwif->dma_master = base; else hwif->dma_master = (hwif->channel) ? hwif->mate->dma_base : base; return 0; } int ide_mmio_dma (ide_hwif_t *hwif, unsigned long base, unsigned int ports) { printk(KERN_INFO " %s: MMIO-DMA at 0x%08lx-0x%08lx", hwif->name, base, base + ports - 1); if (check_mem_region(base, ports)) { printk(" -- Error, MMIO ports already in use.\n"); return 1; } request_mem_region(base, ports, hwif->name); hwif->dma_base = base; if ((hwif->cds->extra) && (hwif->channel == 0)) { request_region(base+16, hwif->cds->extra, hwif->cds->name); hwif->dma_extra = hwif->cds->extra; } /* There is an issue to watch here. The master might not be registered because the BIOS disabled it. Eventually this should be fixed by always registering the mate */ if(hwif->mate == NULL) hwif->dma_master = base; else hwif->dma_master = (hwif->channel) ? hwif->mate->dma_base : base; if (hwif->dma_base2) { if (!check_mem_region(hwif->dma_base2, ports)) request_mem_region(hwif->dma_base2, ports, hwif->name); } return 0; } int ide_iomio_dma (ide_hwif_t *hwif, unsigned long base, unsigned int ports) { printk(KERN_INFO " %s: BM-DMA at 0x%04lx-0x%04lx", hwif->name, base, base + ports - 1); if (!request_region(base, ports, hwif->name)) { printk(" -- Error, ports in use.\n"); return 1; } hwif->dma_base = base; if ((hwif->cds->extra) && (hwif->channel == 0)) { request_region(base+16, hwif->cds->extra, hwif->cds->name); hwif->dma_extra = hwif->cds->extra; } /* There is an issue to watch here. The master might not be registered because the BIOS disabled it. Eventually this should be fixed by always registering the mate */ if(hwif->mate == NULL) hwif->dma_master = base; else hwif->dma_master = (hwif->channel) ? hwif->mate->dma_base : base; if (hwif->dma_base2) { if (!request_region(hwif->dma_base2, ports, hwif->name)) { printk(" -- Error, secondary ports in use.\n"); release_region(base, ports); return 1; } } return 0; } /* * */ int ide_dma_iobase (ide_hwif_t *hwif, unsigned long base, unsigned int ports) { if (hwif->mmio == 2) return ide_mapped_mmio_dma(hwif, base, ports); if (hwif->mmio) return ide_mmio_dma(hwif, base, ports); return ide_iomio_dma(hwif, base, ports); } /* * This can be called for a dynamically installed interface. Don't __init it */ void ide_setup_dma (ide_hwif_t *hwif, unsigned long dma_base, unsigned int num_ports) { if (ide_dma_iobase(hwif, dma_base, num_ports)) return; if (ide_allocate_dma_engine(hwif)) { ide_release_dma(hwif); return; } if (!(hwif->dma_command)) hwif->dma_command = hwif->dma_base; if (!(hwif->dma_vendor1)) hwif->dma_vendor1 = (hwif->dma_base + 1); if (!(hwif->dma_status)) hwif->dma_status = (hwif->dma_base + 2); if (!(hwif->dma_vendor3)) hwif->dma_vendor3 = (hwif->dma_base + 3); if (!(hwif->dma_prdtable)) hwif->dma_prdtable = (hwif->dma_base + 4); if (!hwif->ide_dma_off) hwif->ide_dma_off = &__ide_dma_off; if (!hwif->ide_dma_off_quietly) hwif->ide_dma_off_quietly = &__ide_dma_off_quietly; if (!hwif->ide_dma_host_off) hwif->ide_dma_host_off = &__ide_dma_host_off; if (!hwif->ide_dma_on) hwif->ide_dma_on = &__ide_dma_on; if (!hwif->ide_dma_host_on) hwif->ide_dma_host_on = &__ide_dma_host_on; if (!hwif->ide_dma_check) hwif->ide_dma_check = &__ide_dma_check; if (!hwif->ide_dma_read) hwif->ide_dma_read = &__ide_dma_read; if (!hwif->ide_dma_write) hwif->ide_dma_write = &__ide_dma_write; if (!hwif->ide_dma_count) hwif->ide_dma_count = &__ide_dma_count; if (!hwif->ide_dma_begin) hwif->ide_dma_begin = &__ide_dma_begin; if (!hwif->ide_dma_end) hwif->ide_dma_end = &__ide_dma_end; if (!hwif->ide_dma_test_irq) hwif->ide_dma_test_irq = &__ide_dma_test_irq; if (!hwif->ide_dma_bad_drive) hwif->ide_dma_bad_drive = &__ide_dma_bad_drive; if (!hwif->ide_dma_good_drive) hwif->ide_dma_good_drive = &__ide_dma_good_drive; if (!hwif->ide_dma_verbose) hwif->ide_dma_verbose = &__ide_dma_verbose; if (!hwif->ide_dma_timeout) hwif->ide_dma_timeout = &__ide_dma_timeout; if (!hwif->ide_dma_retune) hwif->ide_dma_retune = &__ide_dma_retune; if (!hwif->ide_dma_lostirq) hwif->ide_dma_lostirq = &__ide_dma_lostirq; if (hwif->chipset != ide_trm290) { u8 dma_stat = hwif->INB(hwif->dma_status); printk(", BIOS settings: %s:%s, %s:%s", hwif->drives[0].name, (dma_stat & 0x20) ? "DMA" : "pio", hwif->drives[1].name, (dma_stat & 0x40) ? "DMA" : "pio"); } printk("\n"); if (!(hwif->dma_master)) BUG(); } EXPORT_SYMBOL_GPL(ide_setup_dma);