
bc

Acrobat JavaScript Object
Specification

Version 5.0

Adobe® Acrobat®

Revised: March 1, 2001

Technical Note # 5186

Acrobat JavaScript Object Specification 2

© 2001 Adobe Systems Incorporated. All rights reserved.

The information in this document is furnished for informational use only, is subject to change
without notice, and should not be construed as a commitment by Adobe Systems Incorporated.
Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccura-
cies that may appear in this document. The software described in this document is furnished
under license and may only be used or copied in accordance with the terms of such license.

Adobe, the Adobe logo, Acrobat, Acrobat Capture, and Distiller are trademarks of Adobe
Systems Incorporated. Microsoft and Windows are registered trademarks and ActiveX is a
trademark of Microsoft in the U.S. and other countries. Macintosh is a trademark of Apple
Computer, Inc. registered in the U.S. and other countries. PowerPC is a trademark of Interna-
tional Business Machines Corporation. UNIX is a registered trademark in the U.S. and other
countries, licensed exclusively through X/Open Co. Ltd. All other products or name brands are
trademarks of their respective holders.

Acrobat Forms - JavaScript Object Specification 1

Table of Contents

Introduction. 15
Welcome to Acrobat™ JavaScript. 15
What Is JavaScript? . 15
What Is Acrobat™ JavaScript? . 15
Document Conventions. 16

Tips . 16
Quick Bars. 16

If You Need Help . 17
Useful Documents . 18

Getting Started with Acrobat™ JavaScript. 20
Where Can You Use JavaScript? . 20

JavaScripts within the Document . 20
JavaScripts external to the Document . 23

A Quick Example . 24
Core Language Features . 25

Data Types . 25
Variables . 27
Undefined Variables . 28
Comments . 29
Punctuation . 29
Parameter Specification for Methods . 30
Quick Help for Methods . 31
Dealing With Exceptions . 31

Editing JavaScripts in Acrobat. 5.0
32

Editing all JavaScripts in a Document . 32
External Editor . 33
Tabbing within the Internal Editor . 33

Interactive JavaScript Console . 33
Executing JavaScript . 33
Parameter Help. 34

Tips for Writing Reliable Code . 34

Using JavaScript in PDF Forms . 36
Organizing Your Code . 36
Working with Fields . 37
Binding Field Dependencies . 38
Formatting and Validation Scripts . 38
Advanced Formatting . 39
PDF Is Not HTML . 40

What’s New For . 5.0

Acrobat Forms - JavaScript Object Specification 2

41
Other . 5.0
Changes . 44

ADBC Object . 45
ADBC properties . 46

SQL Type . 46
JavaScript Type. 46

ADBC methods . 47
getDataSourceList . 47
newConnection. 47

Annot Object . 49
Annotation Access from JavaScript . 49
Annot Properties . 50

alignment . 50
AP . 51
arrowBegin. 51
arrowEnd . 52
attachIcon. 52
author . 52
contents . 52
doc . 53
fillColor . 53
gestures . 54
hidden . 54
modDate . 54
name . 54
noteIcon . 55
noView . 55
page . 55
point. 55
points. 56
popupOpen . 56
popupRect . 57
print . 57
quads . 57
rect . 57
readOnly . 58
rotate . 58
strokeColor . 58
textFont . 58
textSize . 59
type . 59
soundIcon. 59
width . 60

Acrobat Forms - JavaScript Object Specification 3

Annot Methods . 60
destroy . 60
getProps . 60
setProps . 61

App Object . 62
App Object Properties . 62

activeDocs . 62
calculate . 62
focusRect . 63
formsVersion . 63
fs . 63
fullscreen . 63
language. 64
numPlugIns . 65
openInPlace . 65
platform . 65
plugIns. 65
toolbar. 66
toolbarHorizontal . 66
toolbarVertical . 66
viewerType. 67
viewerVariation . 67
viewerVersion . 67

App Object Methods. 67
addMenuItem . 67
addSubMenu . 68
alert . 69
beep . 70
clearInterval. 70
clearTimeOut . 71
execMenuItem . 71
getNthPlugInName . 72
goBack. 73
goForward . 73
hideMenuItem. 73
hideToolbarButton . 73
listMenuItems . 74
listToolbarButtons . 74
mailMsg. 75
newDoc . 75
openDoc . 76
popUpMenu. 77
response . 78
setInterval . 78
setTimeOut. 79

Acrobat Forms - JavaScript Object Specification 4

Bookmark Object . 81
Bookmark Object Properties . 81

children . 81
color . 81
doc . 82
name . 82
open . 82
parent . 82
style . 83

Bookmark Object Methods. 83
createChild . 83
execute . 84
insertChild . 84
remove . 84

Color Arrays . 86
Color Object . 86
Color Properties. 87
Color Methods . 87

convert . 87
equal . 88

Connection Object . 89
Connection methods . 89

newStatement. 89
getTableList . 89
getColumnList. 90

Console Object . 92
Console Methods. 92

show. 92
hide . 92
println . 92
clear . 92

Data Object . 93
Data Object Properties . 93

creationDate . 93
modDate . 93
MIMEType. 93
name . 93
path . 94
size . 94

Doc Object . 95
Doc Access from JavaScript . 95

Acrobat Forms - JavaScript Object Specification 5

Doc Object Properties . 95
author . 95
baseURL . 96
bookmarkRoot . 96
calculate . 96
creator . 97
creationDate . 97
dataObjects . 97
delay . 97
dirty . 98
external . 98
filesize . 98
icons . 98
info . 99
keywords . 100
layout. 101
modDate . 101
numFields. 101
numPages. 101
numTemplates . 101
path . 102
pageNum . 102
producer . 102
securityHandler . 102
selectedAnnots . 103
sounds . 103
spellDictionaryOrder. 103
subject . 104
templates . 104
title . 104
URL . 105
zoom . 105
zoomType. 105

Doc Object Methods . 106
addAnnot . 106
addField . 106
addIcon . 107
addThumbnails. 108
addWeblinks . 108
bringToFront . 109
calculateNow . 109
closeDoc . 109
createDataObject . 110
createTemplate. 110
deletePages . 111
deleteSound . 111

Acrobat Forms - JavaScript Object Specification 6

exportAsFDF . 112
exportAsXFDF . 113
exportDataObject . 114
extractPages . 114
flattenPages. 115
getAnnot. 116
getAnnots. 116
getDataObject. 118
getField . 118
getIcon . 119
getNthFieldName. 119
getNthTemplate . 119
getPageBox . 120
getPageLabel . 120
getPageNthWord . 121
getPageNthWordQuads . 121
getPageNumWords . 122
getPageRotation . 122
getPageTransition . 123
getSound . 123
getTemplate . 124
getURL . 124
gotoNamedDest . 124
importAnFDF. 125
importAnXFDF . 125
importDataObject . 126
importIcon . 127
importSound . 128
importTextData . 129
insertPages . 129
mailDoc . 130
mailForm. 131
movePage. 131
print . 132
removeDataObject . 133
removeField. 133
removeIcon . 133
removeTemplate . 133
removeThumbnails . 134
removeWeblinks . 134
replacePages . 135
resetForm . 135
saveAs . 136
scroll. 137
selectPageNthWord. 137
setPageBoxes . 137

Acrobat Forms - JavaScript Object Specification 7

setPageLabels . 138
setPageRotations . 139
setPageTransitions . 139
spawnPageFromTemplate . 140
submitForm . 141
syncAnnotScan . 143

Event Object . 144
Event Type/Name Combinations . 144

App/Init . 144
Batch/Exec . 144
Bookmark/Mouse Up . 144
Console/Exec . 145
Doc/DidPrint . 145
Doc/DidSave . 145
Doc/Open . 145
Doc/WillClose . 146
Doc/WillPrint . 146
Doc/WillSave . 146
External/Exec. 146
Field/Blur . 147
Field/Calculate . 147
Field/Focus . 147
Field/Format . 148
Field/Keystroke. 148
Field/Mouse Down . 149
Field/Mouse Enter . 149
Field/Mouse Exit . 149
Field/Mouse Up. 149
Field/Validate . 150
Link/Mouse Up . 150
Menu/Exec . 150
Page/Open . 151
Page/Close . 151

Document Event Processing . 151
Form Event Processing . 152
Event Object Properties . 152

change . 152
changeEx . 152
commitKey . 153
keyDown. 153
modifier . 154
name . 154
rc . 154
selEnd . 154
selStart . 154

Acrobat Forms - JavaScript Object Specification 8

shift . 154
source . 155
target . 155
targetName . 155
type . 156
value. 156
willCommit . 157

Field Object . 158
Field Access from JavaScript . 158
Field Properties . 158

alignment . 158
borderStyle . 158
buttonAlignX. 159
buttonAlignY. 159
buttonPosition . 160
buttonScaleHow. 160
buttonScaleWhen. 160
calcOrderIndex . 161
charLimit. 161
currentValueIndices . 161
defaultValue . 163
doNotScroll . 163
doNotSpellCheck . 163
delay . 163
display . 164
doc . 164
editable . 165
exportValues . 165
fileSelect . 165
fillColor . 166
hidden . 166
highlight . 167
lineWidth . 167
multiline . 168
multipleSelection . 168
name . 169
numItems . 169
page . 169
password . 169
print . 170
readonly . 170
rect . 170
required . 171
strokeColor . 171
style . 172

Acrobat Forms - JavaScript Object Specification 9

submitName . 172
textColor . 172
textFont . 173
textSize . 174
type . 174
userName . 174
value. 175
valueAsString . 176

Field Methods. 176
browseForFileToSubmit. 176
buttonGetCaption . 176
buttonGetIcon. 177
buttonImportIcon . 177
buttonSetCaption . 178
buttonSetIcon . 179
checkThisBox. 180
clearItems . 180
defaultIsChecked . 180
deleteItemAt . 181
getArray . 181
getItemAt . 182
insertItemAt . 183
isBoxChecked . 183
isDefaultChecked . 184
setAction. 184
setFocus . 185
setItems. 185
signatureInfo. 186
signatureSign . 188
signatureValidate . 189

FullScreen Object . 191
FullScreen Properties. 191

backgroundColor . 191
clickAdvances . 191
cursor. 191
defaultTransition . 192
escapeExits. 192
isFullScreen . 192
loop . 192
timeDelay . 193
transitions . 193
usePageTiming . 193
useTimer . 194

Global Object. 195

Acrobat Forms - JavaScript Object Specification 10

Global Object Properties. 195
Global Object Methods . 195

setPersistent . 195
subscribe. 196

Identity Object . 198
Identity Object Properties . 198

corporation . 198
email . 198
loginName . 198
name . 198

Index Object. 199
Index Object Properties. 199

available . 199
name . 199
path . 199
selected . 199

PlugIn Object. 200
PlugIn Object Properties. 200

certified. 200
loaded . 200
name . 200
path . 201
version. 201

PPKLite Signature Handler Object . 202
PPKLite Object Properties . 203

appearances . 203
isLoggedIn . 204
loginName . 204
loginPath . 204
name . 204
signInvisible. 205
signVisible . 205
uiName . 205

PPKLite Object Methods . 205
login . 205
logout . 206
newUser . 206
setPasswordTimeout. 207

Report Object . 208
Report Object properties . 208

size . 208

Acrobat Forms - JavaScript Object Specification 11

absIndent . 208
color . 208

Report Object Methods . 209
breakPage . 209
divide . 209
indent . 209
outdent . 210
open . 210
save . 210
mail. 211
Report . 211
writeText. 211

Search Object . 213
Search Object Properties . 213

available . 213
indexes . 213
matchCase . 213
maxDocs . 214
proximity . 214
refine . 214
soundex. 214
stem . 214
thesaurus . 215

Search Object Methods . 215
addIndex. 215
getIndexForPath . 215
query . 215
removeIndex . 216

Security Object . 217
Security Object Properties . 217

handlers . 217
validateSignaturesOnOpen . 217

Security Object Methods. 217
getHandler . 217

Sound Object . 219
Sound Object Properties . 219

name . 219
Sound Object Methods . 219

play. 219
pause . 219
stop. 219

Spell Object . 220

Acrobat Forms - JavaScript Object Specification 12

Spell Object Properties . 220
available . 220
dictionaryNames . 220
dictionaryOrder . 220
domainNames . 221

Spell Object Methods . 221
addDictionary . 221
addWord . 222
check . 222
checkText . 223
checkWord . 223
removeDictionary . 224
removeWord . 225
userWords . 225

Statement Object . 226
Statement properties. 226

columnCount . 226
rowCount . 226

Statement methods . 226
execute . 226
getColumn . 227
getColumnArray. 228
getRow . 228
nextRow . 229

Template Object . 231
Template Object Properties . 231

hidden . 231
name . 231

Template Object Methods . 231
spawn. 231

TTS Object . 233
TTS Properties . 233

available . 233
numSpeakers. 233
pitch . 233
soundCues . 234
speaker . 234
speechCues . 234
speechRate. 234
volume. 234

TTS Methods . 235
getNthSpeakerName. 235
pause . 235

Acrobat Forms - JavaScript Object Specification 13

qSilence. 235
qSound . 235
qText . 236
reset . 236
resume. 236
stop. 236
talk . 237

this Object . 238
Variable and Function Name Conflicts . 238

Util Object. 240
Util Object Methods . 240

printf . 240
printd . 241
printx . 243
scand . 243

A Short Acrobat JavaScript FAQ. 245
Where can JavaScripts be found and how are they used?. 245

Folder Level JavaScripts. 245
Document level. 246
Field level . 246

How should I name my form fields? . 246
How do I use date objects? . 247

Converting from a Date to a String . 248
Converting from a string to a date . 248
Date arithmetic . 249

How can I make my document secure? . 251
Restricting Access to the Document . 251
Restricting Permissions . 251
Digital Signatures . 252

How can I lock a document after a signature field has been signed?. 252
How can I make my documents accessible? . 253

Document Meta-Data . 253
Short Description . 254
Setting tab order . 254
Use the TTS object . 254
Default Behavior . 254

How can I define globals in JavaScript? . 255
Making Globals Persistent. 255

How can I send form data to an e-mail address? . 255
How can I hide a field based on the value of another? . 256
How can I query a field value in another open form from the form I'm working on?
256
How can I intercept keystrokes one by one as they occur? 256

Acrobat Forms - JavaScript Object Specification 14

How can I build a nested popup menu? . 257
How can I construct my own colors? . 257
How can I prompt the user for a response in a dialog?. 257
How can I fetch an URL from JavaScript? . 257
How can I change the hot-help text for a field dynamically? 258
How can I change the zoom factor programmatically? . 258
How can I determine if the mouse has entered/left a certain area? 258
What are Rotated User Space and Default User Space? . 258

Rotated User Space . 258
Default User Space. 258
Graphical Relationship . 259

How can I create a form field programmatically? . 261
Button . 261
Check Box . 264
Combo Box . 265
List Box . 269
Radio Button . 270
Signature . 271
Text. 273

Quick Reference: Forms. 275
Appearance: All Fields . 275
Action: All Fields . 276
Options: Buttons . 277
Options: Check Box and Radio Button . 278
Options: Combo and List Boxes . 279
Options: Text Fields. 280
Format: Combo and Text . 281
Validate: Combo and Text . 282
Calculate: Combo and Text . 283
Signed . 284
Selection Change . 285

How can I create an Annotation programmatically?. 286
Circle and Square Annotations. 287
Line Annotations . 288
Stamp Annotations . 289
FreeText Annotations . 290
Text Annotations . 291
Ink Annotations . 292
Highlight, Strikeout, Underline and Squiggle . 293

Acrobat JavaScript Object Specification 15

Acrobat JavaScript Object
Specification

Introduction

Welcome to Acrobat™ JavaScript

Welcome to the Acrobat 5.0 JavaScript Reference Manual. In the pages to follow, you'll find
all the information you need to get started using JavaScript in your PDF documents. With the
aid of Acrobat's powerful JavaScript binding, you'll be able to customize forms and other
documents in ways that greatly enhance their appearance, utility, and interactivity.

This manual is not only a reference for Acrobat’s JavaScript objects, properties and methods, it
also includes some instruction on the basics of JavaScript programming and numerous useful
examples that illustrate the properties and methods of Acrobat JavaScript as well as relevant
programming techniques.

What Is JavaScript?

JavaScript is the powerful, object-oriented scripting language developed by Netscape
Communications to enhance web-page interactivity. Originally designed for Netscape's
browser software, JavaScript has rapidly evolved to become a widely used, general-purpose
programming language. It is now accepted as a standard under ISO-16262 of the International
Standards Organization. (The first industry-standard version of the language, endorsed by the
European Computer Manufacturers Association, was known as ECMAScript.) The core
language has undergone several revisions, the most current being version 1.5, the one used by
Acrobat 5.0.

What Is Acrobat™ JavaScript?

Core JavaScript has been extended in various implementations to meet various needs. Client-
side (browser based) JavaScript adds objects and methods to manipulate browser windows and
their contents. Server-side JavaScript adds File and Database objects to deal with database
queries and other typical server-side actions. Acrobat™ JavaScript extends the language by
adding objects and methods designed to allow easy access to (and manipulation of) PDF
document contents. The various extensions to the language that make this possible are
described in detail in this manual.

The same characteristics that make browser-based JavaScript easy to work with—relaxed data
typing, C-like syntax, built-in Math and String classes—are applicable to Acrobat™

Acrobat Forms - JavaScript Object Specification 16

JavaScript as well. In fact, Acrobat™ JavaScript is built on top of core JavaScript. All of the
core-language features that you might be accustomed to working with in browser-based,
JavaScript are available in Acrobat™ JavaScript, including Math, String, Date, Array, and
RegExp (regular expression) classes.

Space considerations preclude a detailed discussion of core-JavaScript features here. This
manual assumes that you have had some exposure to JavaScript as it is typically used in a
browser environment. (For more information on the core language, you should visit http://
developer.netscape.com/library/documentation/javascript.html on the Web, or consult the computer
programming section of any good bookstore.)

If you already have some JavaScript programming experience, you will still find this manual
helpful for making the transition from browser-based JavaScript to Adobe Acrobat JavaScript.
You will learn how to access information about the PDF document, including properties like
zoom factor and file size, as well as information about the runtime environment, such as the
host computer platform and whether a document is being viewed in Acrobat, or Acrobat
Reader. In addition, you will learn how to use built-in methods to access the field information
in forms and modify form contents (including appearance attributes) at runtime.

Document Conventions

Tips

From time to time, you will see tips offered in boxes, like this:

Tip: This is where you’ll find a good idea or two.

The comments offered in these boxes are optional—you can skip over them, if you want.
Nevertheless, they are designed to give you practical “real-world” solutions to problems or
situations that you are likely to encounter in your coding.

Quick Bars

There are symbols that are shown at the beginning of most every property or method in a
“quick” bar for quick interpretation.

Example:

#.# The first column is a number that indicates indicates in which version of the software a
property or method became available. As this document pertains to Acrobat version 5.0, there
exist some compatibility issues with older versions of the software. If the number is specified,
then the property or method is available only in versions of the Acrobat software greater than

5.0 � � �

http://developer.netscape.com/library/documentation/javascript.html
http://developer.netscape.com/library/documentation/javascript.html

Acrobat Forms - JavaScript Object Specification 17

or equal to that number. Before accessing this property or method, the script should check that
the forms version is greater than or equal to that number if backwards compatibility is desired.

Example:
if (typeof app.formsVersion != "undefined" && app.formsVersion >= 5.0) {

// Perform version specific operations.

}

If the first column is blank, then no compatibility checking is necessary.

As the JavaScript extensions to Acrobat Forms have evolved, some properties or methods have
been superseded by other more flexible or appropriate properties or methods. The use of these
older methods are discouraged and marked by Mr. Unhappy � in the version column.

� The second column, if not blank, indicates that using this method or property will modify the PDF
document. If the document is subsequently saved, the effects of this method are saved as well.

� The second column can also contain the preferences symbol that indicates that even though this
property does not change the document, it can permanently change a user’s application preferences.

� The third column, if not blank, indicates that this method or property may only be available
during certain events for security reasons (e.g. batch event, application start, or execution
within the console). See the discussion in the section on the Event Object for more details of the
various Acrobat events.

� The fourth column, if not blank, indicates that this method or property is not available in the
Acrobat Reader.

If You Need Help

The Web offers a great many resources to help you with JavaScript in general as well as JavaScript for
PDF. For example:

• http://www.adobe.com/support/forums/main.html—Adobe Systems, Inc. provides dedicated
online support forums for all Adobe products, including Acrobat and Acrobat Reader.

• http://www.adobe.com/support/database.html—In addition to the forums, Adobe maintains
a searchable support database with answers to commonly asked questions.

• http://www.pdfzone.com/resources/lists.html—The PDFZone website operates discussion
forums on PDF forms, PDF development, and Acrobat usage, among other topics. Experts
from around the world participate in these forums to help answer users' questions.

• http://forum.planetpdf.com/—This popular area of the PlanetPDF website contains
discussion forums for beginners, developers, forms integrators, and more. As with the
PDFZone lists, experts from around the world participate in the Planet PDF Forum
(formerly known as AcroBuddies).

http://www.adobe.com/support/forums/main.html
http://www.adobe.com/support/database.html
http://forum.planetpdf.com/
http://www.adobe.com/support/forums/main.html
http://www.adobe.com/support/database.html
http://www.pdfzone.com/resources/lists.html
http://www.adobe.com/support/database.html

Acrobat Forms - JavaScript Object Specification 18

• PlanetPDF (http://www.planetpdf.com) has a section specifically devoted to JavaScript
examples, called Planet PDF Developers.

The ultimate authority on the core JavaScript language continues to be its originator, Netscape
Communications. See http://developer.netscape.com/library/documentation/javascript.html for a list of
current documentation devoted to JavaScript.

Useful Documents

Core JavaScript 1.4 Documentation

Complete documentation for JavaScript 1.5, the version used by Acrobat 5.0, is available on
the web at http://developer.netscape.com/docs/manuals/javascript.html.

Core JavaScript Guide, Part I. Core Language Features, Netscape Communications
Corporation. Part I of this document gives a conceptual overview of the core JavaScript
language. Available in both html and PDF format. http://developer.netscape.com/docs/manuals/
js/core/jsguide15/contents.html. Note: The rest of the document concerns Netscape’s
extensions to core JavaScript and are not applicable in the Acrobat environment.

Core JavaScript Reference, Part I. Object Reference and Part II. Language Elements, Netscape
Communications Corporation. Parts I and II are a reference to the core JavaScript language.
Available in both html and PDF format. http://developer.netscape.com/docs/manuals/js/core/
jsguide15/contents.html. Note: The rest of the document concerns Netscape’s extensions to
core JavaScript and are not applicable in the Acrobat environment.

Adobe Web Documentation

PDF Reference, second edition, Adobe Portable Document Format, Version 1.3, Adobe
Systems Incorporated, published by Addison-Wesley, July 2000. This document is available in
bookstores, and in electronic form at http://partners.adobe.com/asn/developer/acrosdk/docs/
PDFRef.pdf.

Technical Note #5190, Acrobat Viewer plug-in API Overview. Gives an overview of the objects
and methods provided by the plug-in API of the Acrobat viewer. This document is available
with the Adobe Acrobat Plug-ins SDK CD-ROM or on the Adobe Web site http://
partners.adobe.com/asn/developer/acrosdk/docs/apiovr.pdf.

Technical Note #5167, Acrobat Viewer plug-in API Development. Describes how to develop
Acrobat viewer plug-ins on the various platforms available. This document is available with
the Adobe Acrobat Plug-ins SDK CD-ROM or on the Adobe Web site http://partners.adobe.com/
asn/developer/acrosdk/docs/apidev.pdf.

Technical Note #5191, Acrobat Viewer plug-in API On-Line Reference. Describes in detail the
objects and methods provided by the Acrobat viewer’s plug-in API. This document is available
with the Adobe Acrobat Plug-ins SDK CD-ROM or on the Adobe Web site http://
partners.adobe.com/asn/developer/acrosdk/docs/apiref.pdf.

http://developer.netscape.com/docs/manuals/js/core/jsguide15/contents.html
http://developer.netscape.com/docs/manuals/js/core/jsguide15/contents.html
http://www.planetpdf.com
http://developer.netscape.com/library/documentation/
javascript.html
http://partners.adobe.com/asn/developer/acrosdk/docs/PDFRef.pdf
http://partners.adobe.com/asn/developer/acrosdk/docs/PDFRef.pdf
http://www.planetpdf.com/mainpage.asp?webpageid=898
http://partners.adobe.com/asn/developer/acrosdk/docs/apidev.pdf
http://partners.adobe.com/asn/developer/PDFS/TN/APIDEV.PDF
http://www.planetpdf.com
http://developer.netscape.com/docs/manuals/js/core/jsguide15/contents.html
http://developer.netscape.com/docs/manuals/js/core/jsguide15/contents.html
http://partners.adobe.com/asn/developer/acrosdk/docs/apidev.pdf
http://partners.adobe.com/asn/developer/acrosdk/docs/apiref.pdf
http://partners.adobe.com/asn/developer/acrosdk/docs/apiref.pdf
http://developer.netscape.com/docs/manuals/javascript.html
http://partners.adobe.com/asn/developer/acrosdk/docs/apiovr.pdf
http://partners.adobe.com/asn/developer/acrosdk/docs/apiovr.pdf
http://partners.adobe.com/asn/developer/PDFS/TN/APIDEV.PDF
http://beta1.adobe.com/ada/acrosdk/DOCS/VWRPIREF.PDF
http://beta1.adobe.com/ada/acrosdk/DOCS/VWRPIREF.PDF
http://partners.adobe.com/asn/developer/PDFS/TN/APIOVR.PDF
http://partners.adobe.com/asn/developer/acrosdk/docs/apiref.pdf
http://partners.adobe.com/asn/developer/acrosdk/docs/apiref.pdf

Acrobat Forms - JavaScript Object Specification 19

Adobe CD Documentation

There are a variety of documents and samples on the Acrobat CD that discuss using JavaScript
in a variety of ways.

Batch Sequences: an indepth discussion of batch sequences and how to use JavaScript to solve
common problems.

Getting Started with ADBC: a primer for accessing database information through the Acrobat
Database Connectivity object including a sample mail merge batch sequence.

Tutorial on form field authoring: discusses creating and manipulating form fields with a step-
by-step introduction to authoring an invoice.

Forms System Implementation Notes: this document discusses interfacing Acrobat and web
servers for form submission.

What’s In A Name: this document talks about how the names for fields can make a big
difference in form authoring and processing.

Acrobat Forms - JavaScript Object Specification 20

Getting Started with Acrobat™ JavaScript
JavaScript programming opens up exciting new vistas for authors of PDF documents. With
relatively little effort, you'll find that you can use JavaScript to enhance PDF documents in
countless ways. For example, you can use JavaScript to:

• Execute menu commands (in Acrobat or Reader) programmatically.

• Issue system beeps and alerts.

• Format form input as the user is entering it.

• Bind field dependencies in a form.

• Change the appearance of form fields (including background colors and text fonts)
in response to user actions.

• Cause e-mail to be sent automatically if the user clicks a link or button.

• Query a user for input via a “response” dialog, from a regular PDF document or
inside a form.

• And much more.

In this section, we'll explore the basics of the JavaScript language and begin to look at some of
the ways in which the core language has been expanded to accommodate PDF-related features
and functionality. Along the way, we'll provide a few tips for making your code more reliable
and easier to maintain. If you are new to programming, don't expect to understand every single
point. It takes a while to get used to programming conventions, and during the learning process
you're bound to make mistakes. But with relatively little effort, you should be able to craft
your own basic JavaScripts (based on the working code examples shown here) in no time.

Where Can You Use JavaScript?
JavaScripts are either part of the PDF document itself, or exterior to the document.

JavaScripts within the Document

There are six ways in which you can attach JavaScript to PDF documents:

1. You can add JavaScript to Page Open or Page Closed actions. (In Acrobat, use Docu-
ment->Set Page Action...) Scripts added here will execute each time a page opens (or
closes), including the first time a document opens or immediately before a document
closes.

2. You can add JavaScripts to Document Actions. (In Acrobat, use Tools-> JavaScript-> Set Docu-
ment Actions...). Scripts can be added for several types of document related actions like Docu-
ment Will Close (when a document closes), Document Will Save (right before a document is

Acrobat Forms - JavaScript Object Specification 21

saved), Document Did Save (right after a document is saved), Document Will Print (right before
a document is printed), Document Did Print (right after a document is printed).

3. You can add JavaScript to Bookmarks. In Acrobat, after creating a Bookmark with
Control-B (or Command-B), bring up the Bookmark Properties dialog using Control-I (or
Command-I). Be sure a Bookmark is selected first. When the Bookmark Properties dialog
appears, choose JavaScript from the Action popup menu, as shown below:

After choosing JavaScript, click the Edit… button to add a script to the Bookmark. The script
you add here will execute every time the Bookmark is clicked.

4. You can also add JavaScript to a Link created by means of Acrobat's Link Tool. Either
select an existing link, or enable the Link tool (by pressing the 'L' key on your keyboard)
and drag out the outline of a new link somewhere on the page. When you've created a new
link, the Create Link/Link Properties dialog will appear. (If you've selected a preexisting
link, you can make the Link Properties dialog appear with Control-I/Command-I.) In the
Action Type popup, select JavaScript and hit the Edit… button to add or edit your script.

Acrobat Forms - JavaScript Object Specification 22

5. Document-level (or so-called "top level") JavaScripts can be added in Acrobat by using
Tools->JavaScript->Document JavaScripts... When the dialog appears, you can add your
own custom JavaScript functions here, as shown below:

Any code you add at this level can be "seen" (that is, called or used) from any other JavaS-
cripts in the document, which is why this is often called "top-level" code.

Acrobat Forms - JavaScript Object Specification 23

6. Finally, you can add JavaScript to individual form fields created using the Form Tool.
Either doubleclick an existing field, or use the Form Tool (type 'F' on the keyboard to
enable it) and drag out the outline of a new field, to bring up the Field Properties dialog:

Within this dialog, there are several ways to add JavaScripts to a field. The Actions tab
exposes a pane (as shown above) in which you can add JavaScripts via the Add… button. Note
that when adding JavaScripts to Button fields (the case shown here), you can attach separate
scripts to Mouse Up, Mouse Down, Mouse Enter, and Mouse Exit button events, as well as On
Focus and On Blur. You can also add more than one script to one event (they are executed
sequentially in the order you add them.) Other field types expose other areas where JavaScripts
can be added. For example, Text fields not only have mouse-event actions but can accept
JavaScripts as Format, Validate, and/or Calculation scripts. (Appropriate panes exist for these
options when "Text" is selected in the Type popup in the Field Properties dialog.)

JavaScripts external to the Document

In addition to JavaScripts that are saved with the document, JavaScripts external to the
document can be executed as well. There are three other ways external JavaScripts can be
executed.

Acrobat Forms - JavaScript Object Specification 24

1. Folder Level JavaScripts: JavaScripts can be saved in a file, with file extension of .js, and
placed in one of the two JavaScript folders (the application and user folders). When the
Acrobat application starts up, the application reads these folders and executes any JavaS-
cript files found.

2. Console JavaScripts: JavaScripts can be typed into the Acrobat console and executed. See
the Console Object for a discussion of this feature. This is mostly a testing feature of
Acrobat.

3. Batch JavaScripts, also called batch sequences. Beginning with Acrobat 5.0, a powerful
batch system for the execution of JavaScript for each file that has been selected to be
processed. See the document “Batch Sequences: Tips, Tricks and Examples” available one
the Acrobat CD for more details.

A Quick Example

One of the most common uses for JavaScript is to enable a calculation or other action in
conjunction with a mouse or keyboard event associated with a form field. For example, you
may want a script to execute whenever a user presses a button on a form. To set this up, you
would click the Actions tab inside the Form Properties dialog (as shown above), then Add a
JavaScript to a mouse event—most likely a mouse-up event.

When adding JavaScript to a form field, you will see the following kind of dialog box for
doing script editing:

Whatever you type in this box will be executed when the appropriate event occurs in
conjunction with the field that the script is attached to. In this example, we have attached a
small script (with one line of JavaScript code) to a Button field's mouse-up event. The code
issues a standard system beep, using the beep method of the App Object class. The net result is
that whenever the user presses the button in the form, the mouse-up event occurring inside the

Acrobat Forms - JavaScript Object Specification 25

button will generate a system beep. (This is obviously a rather trivial example, but it shows
how to attach custom JavaScript code to mouse events in form fields.)

Tip: It is considered a good user interface design practice to associate script
actions with mouse-up (rather than mouse-down) events. The reason most
scripts should execute only after the user lets his finger off the mouse button
is that until then, the user may wish to reconsider what he is doing and move
the mouse outside the button (cancelling the action before it happens). This
is the default button behavior in most commercial software applications.

Core Language Features
Before we discuss features of Acrobat™ JavaScript that apply specifically to PDF documents,
let's take a moment to review some of the fundamental concepts on which the JavaScript
language is based.

Data Types

JavaScript supports primitive (core) data types—such as Booleans, numbers, and strings—as
well as composite data types, like objects and functions. You’ll be working with primitive data
types a lot. Consequently, it’s important that you understand what they mean and how
JavaScript interprets them.

Booleans are the simplest data type, since they can have just two values: true and false.

Tip: Internally, JavaScript represents true and false values as 1 and 0,
respectively. But anything that has a non-zero value will be evaluated by the
JavaScript interpreter as true in a Boolean context.

Numbers are represented using the standard scientific notation, for example, 3.14, 2000, or
6.023e+23. Unlike some other languages, JavaScript does not distinguish between integer or
floating-point values: In JavaScript, all numbers (regardless of how you write them) are
represented internally as 64-bit IEEE floating-point values. In base-ten terms, you have about
20 digits of precision in which to work, which ought to be fine for most applications. (If you
can’t achieve the precision you’re looking for in JavaScript, chances are you won’t easily find
it in other languages, either.)

Note that you should not write integer values with preceding zeros in JavaScript, since
JavaScript interprets '021' as the octal representation of the base-ten number 17. (In addition to
octal triplets, you can write numbers in hexadecimal using the '0x' prefix: e.g., 0xFF represents
a value of 255.)

Acrobat Forms - JavaScript Object Specification 26

A string is a sequence of letters, digits, punctuation, or other characters enclosed in quotation
marks. Single quotations or double quotations can be used; it doesn't matter. (If your string
happens to contain double-quotes as part of the desired string sequence, you should enclose the
entire string in single quotes. Likewise, if your string happens to contain single-quotes as part
of the string sequence, you should enclose the entire string in double quotes.) The following
are all legal string values:

'This will work.'

"3.14"

'The password is "zxcv"'

JavaScript recognizes a number of escape sequences for representing characters inside strings
that would otherwise be impossible to represent. The following table summarizes those escape
sequences.

Table 1 JavaScript Escape Sequences

Arrays are collections of data values. In JavaScript, the members of an array can be any
primitive data type, and the same array can (if you want) hold different data types. As in the C
language, members of an array are specified or accessed by numeric indexes enclosed in square
brackets. Thus, to talk about the value stored in the first element of an array called names, you
would refer to names[0]. The second element of the array would be names[1]; the third element,
names[2], and so on.

Tip: Bear in mind that core JavaScript has built-in classes, with many helpful
(and powerful) utility methods, for Strings and Arrays, not to mention
additional core-language classes such as Math, Date, and RegExp. All of
these classes (and their associated methods) are available to you in
Acrobat™ JavaScript. (For information on these classes and methods,
consult any good book on JavaScript.)

Sequence Character

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Tab

\’ Single quote

\” Double quote

\\ Backslash

\uXXXX Unicode character specified
by four hexadecimal digits

Acrobat Forms - JavaScript Object Specification 27

Variables

JavaScript allows you to declare your own variables using the 'var' keyword. Some things you
should know about variables in JavaScript:

• All identifiers in JavaScript are case-sensitive, which means that a variable named
'MyVariable' is not the same as one named 'myVariable'.

• Variables created in JavaScript are permanent, within their scope. Once you
declare a variable, there is no way to "undeclare" or destroy it. (JavaScript's
garbage-collection mechanism will automatically deallocate variables when you're
through with them.)

• All variables in JavaScript have a scope, which determines the variable's lifetime
and accessibility (i.e., whether it is usable at a given time). Variables declared
inside functions are said to have local scope, which means they can be used only
inside the function in which they were declared.

To declare a variable, simply type:

var circumference;

Or, you can declare a variable and initialize it in one statement:

var circumference = 6.28;

After declaring a variable, you no longer need to preface it with the 'var' keyword. You can
simply use it in expressions as you would use any primitive data type.

Tip: It is legal, in JavaScript, to declare a variable without using the 'var'
keyword. But since (as we mentioned) all JavaScript variables must have a
scope, this leaves the interpreter in a bit of a quandary as to how to "scope"
a non-'var' variable. The interpreter resolves this problem by attaching the
unscoped variable to the global object (the "mother of all runtime objects"),
which has the effect of making the variable in question "usable" from all
points in a program. This may or may not be what you want. Usually, it is
not.

Unlike most other “high level languages”, JavaScript is rather relaxed when it comes to
variable typing. This means that you, as a programmer, don’t have to worry about telling
JavaScript whether a given variable should behave like a number or a string. JavaScript will
take its “best guess” and make a variable behave as a number in numeric contexts and as a
string in string contexts.

JavaScript is an object-oriented language, yet unlike Java or C++ requires no prototyping of
objects. To create a new object, you can simply type:

Acrobat Forms - JavaScript Object Specification 28

var hue = new Object();

This statement calls JavaScript's object constructor function which creates a generic,
propertyless object. Once an object has been created, you can then assign fields (which can be
properties or methods, depending on whether they refer to primitive data types or functions) to
the object as follows:

hue.favorite = "taupe";

hue.worst = "teal";

hue.maximum = 15;

hue.sum = function (a,b) { return a + b; }

All four statements are legal. The first three statements create properties and assign values to
them. (In one case, the value is numeric; in the other two cases, the values are strings.) The
fourth statement creates a new method for the object by assigning a function to it. The method
can be called and used just like any other function:

var x = hue.sum(2, 2); // 'x' now has the value '4'

In some ways, arrays and objects are alike, because both are collections of arbitrary data types.
With arrays, the component pieces are accessed using numeric indexes and square brackets.
With objects, the components are accessed through identifiers, using a period between the
object name and the component name.

Undefined Variables

In JavaScript, as in other languages, if you attempt to use a variable in an expression without
declaring it first, you will generate a runtime error. Odds are, the console window (in Acrobat
Business Tools or full Acrobat) or a message box (in Acrobat Reader) will pop up, telling you
(or your user!) that “such-and-so variable is not defined”. Consider the following code:

function memberSum() {

var member = new Object(); // create a new, blank object

member.john = 1; // create a new property, 'john'

return (totalmembers + member.john); // error!

}

In this scenario, totalmembers is a new variable that was not declared anywhere. Using it inside
the return expression generates a runtime error. The line of code that creates member.john and
assigns a value of '1' to it is not an error, since in JavaScript, you can create new properties for
your objects on-the-fly like this. (See discussion under "Objects," above.)

Earlier, we said that JavaScript has relaxed typing rules. This is not the same as saying that it
is an untyped language. JavaScript does have data types; in fact, it is this very property that
allows you to check a variable at runtime to see if it is defined. To test a variable to see if it is
defined use the typeof operator:

Acrobat Forms - JavaScript Object Specification 29

if (typeof aVariable == "undefined") // undefined variable?

app.alert("Undefined variable.");

else {

// the variable is safe to use

}

Here, we use the App Object's predefined alert method to put an alert dialog onscreen if the
variable being tested is not defined. Notice that JavaScript uses the C-like == operator to test
for equality. Also note that strings are compared by value; hence two strings can be compared
directly using the == operator.

Comments

You can insert comments in your JavaScript code using either the C++ or C-style commenting
protocol. That is to say, any text between a double-slash (//) and the end of a line will be
ignored by JavaScript. Also, any text between /* and */ will be treated as a non-executable
item (or comment). The following are valid comment styles:

// This is a single-line comment.

/* This is also a comment. */ // as is this

/*

 *

 * You can, if you want, also do this.

 *

 */

Comments are extremely important tools because they make programs much more readable and
easier to maintain. JavaScript uses a succinct, C-like syntax, which means that you can
accomplish a lot in just a few lines of code. Unfortunately, that also means you can very easily
wind up with programs that are compact, but nearly indecipherable and hard to debug. As a
result, you should take extra care to “comment your code” liberally as you write it. The net
result will be code that's more reliable and more likely to make sense when you sit down six
weeks from now to look at it again.

Punctuation

Strictly speaking, you do not have to put semicolons at the end of JavaScript statements (as
you do with C or Java statements). Statements without semicolons will execute normally.
However, it is good practice to insert semicolons wherever appropriate. Likewise, you can omit
parentheses from certain constructor functions, such as:

var n = new Object;

But this, too, is not good form. Most functions require parentheses; using them in every case
promotes consistency and readability.

Acrobat Forms - JavaScript Object Specification 30

Parameter Specification for Methods

The parameter (or argument) list of a Acrobat JavaScript method can be specified in two ways:

1. Use the standard core JavaScript technique of listing the parameters separated by commas.
Optional parameters may be specified, skipped over using an empty string, or truncated
from the list. The parameters must be listed in the correct order. For example,

app.alert("Hello World!", 1, 1);

app.alert("Hello World!","",1); // Take default for second parameter

app.response("How are you today?");

app.response("How are you today?","", "Fine"); // Specify cDefault only

2. Use an object literal to pass argument information to the method. An object literal is a
“list of zero or more pairs of property names and associated values of an object, enclosed
in curly braces ({})”1. The following code lines repeat the examples above:

app.alert({cMsg: "Hello World!", nIcon: 1, nType: 1});

app.alert({cMsg: "Hello World!", nType: 1});

app.response({cQuestion: "How are you today?"});

app.response({cQuestion: "How are you today?", cDefault: "Fine"});

The property names that appear in the object literal are the parameter names given in the speci-
fication of the method; for example, the app.response method begins this way:

response
Parameters: cQuestion, [cTitle], [cDefault], [bPassword]
Returns: cResponse or null on cancel

There is one required parameter, and three optional ones. The names of the parameters are the
ones used in the creating the object literal as the argument of the App.response, see the
examples above. (There is no significance to the name of the return value, cResponse, other
than to suggest that the method returns a string.)

Note: The object literal method of specifying parameters may not available be for
all Acrobat JavaScript functions.

5.0

1."Core JavaScript Guide", Version 1.4, Netscape Communications Corporation, October 30, 1998, page 31.

Acrobat Forms - JavaScript Object Specification 31

Quick Help for Methods

As an added convenience, if you give any Acrobat method an argument of acrohelp and
execute that method (for example, in the console editor), the method will return a list of its
arguments names and types.

Example: In the console, type

app.response(acrohelp);

While the cursor is still on the line you entered, press either Ctrl-Enter or the Enter key on the
numeric key pad. The output to the console is seen to be:

uncaught exception: Console:Exec:1: Help for App.response

====> [cQuestion: string]

====> [cTitle: string]

====> [cDefault: string]

====> [bPassword: boolean]

Optional arguments are listed in square brackets; required parameters have no brackets.

Dealing With Exceptions

Acrobat JavaScript methods will throw an exception on error. The script writer can better
control these exceptions by using the try/catch/finally (JavaScript 1.4), possibly in conjunction
with the throw statement. For example, try to connect to a database using the ADBC plugin.

function getConnected()

{

try {

ConnectADBCdemo = ADBC.newConnection("ADBCdemo");

if (ConnectADBCdemo == null) throw "Could not connect";

statement = ConnectADBCdemo.newStatement();

if (statement == null) throw "Could not execute newStatement";

if (statement.execute("Select * from ClientData"))

throw "Could not execute the requested SQL";

statement.nextRow() // Statement.nextRow() throws an exception...

return true; // if there is no next row

 } catch(e) {

app.alert(e);

return false;

 }

5.0

5.0

Acrobat Forms - JavaScript Object Specification 32

}

Developers and script writer can gain information about the structure of the exception object
by executing the following script:

try {

app.alert(); // force an exception, one argument required for alert

} catch(e) {

for (var i in e)

 console.println(i + ": " + e[i])

// now display the error message, which is e.toString()

console.println("e: " + e);

}

Error handlers can be written to deal with exceptions thrown by one of the Acrobat plugins and
by custom written JavaScript code, such as the first (very simple) example above.

A very common case for throwing an exception is if the underlying object no longer exists (i.e.
it is dead but a reference to the object still exists). Consider the following piece of code:

var myDoc = app.newDoc();

myDoc.close();

myDoc.pageNum = 3;

This will throw an exception when the third line is executed. The document has been closed
and no longer exists. A reference to this document is still being held in myDoc and any attempt
to use it will throw an exception:

uncaught exception:Console :Exec:1: Doc.pageNum object is dead.

Editing JavaScripts in Acrobat 5.0

Editing all JavaScripts in a Document

The user can now view and edit all JavaScripts in a PDF document via the Acrobat menu item
Edit All JavaScripts (Tools-> JavaScript -> Edit All JavaScripts...). All the scripts will be
displayed and organized by XML tags. You'll notice that you can easily identify one script
among many via the XML tags content. It's very important not to edit the XML tags added for
script identification purposes by Acrobat. Your changes may not be ccepted in case Acrobat
finds they have been edited. The same feature can be accessed via buttons strategically located
in some dialogs (e.g.: the Actions tab in the Form Fields Properties dialog).

5.0 �

Acrobat Forms - JavaScript Object Specification 33

External Editor

The user can now specify an External Editor program to edit JavaScripts in Acrobat. (Edit->
Preferences-> General-> JavaScript). You can choose and specify an external editor program
which will be used any time a JavaScript has to be edited from inside Acrobat. Acrobat will
generate a temporary file and open it in the external editor program. The user has to save the
file in order for his changes to be accepted by Acrobat. Acrobat will be inaccessible to the user
while the file is being edit in the external editor program. Close the editor to regain access to
Acrobat.

Note: This feature is not available on the Macintosh.

Tabbing within the Internal Editor

Pressing the Tab key will insert four spaces at the insertion point. Pressing Shift+Tab will
move the cursor four (or less) spaces to the left.

Highlighting a line, or a portion of a line, and then pressing Tab (or, Shift+Tab) will move the
whole line to the right (respectively, to the left) four spaces (or less, in the case of Shift+Tab).
Blocks of lines can be tabbed in the same way by first highlighting the lines then pressing
either Tab or Shift+Tab.

Interactive JavaScript Console

The Acrobat JavaScript console is now editable and interactive. Any JavaScript code that you
write to the console can now be immediately evaluated. The alternate <Enter> key on the
Numeric pad, or, for Win and Mac users, the Ctrl+Return key combination, is used for that
purpose. The descriptions for executing JavaScript and for tabbing within the console given
below are valid for any of the internal JavaScript editors: the console, the document level
JavaScript editor, the form action JavaScript editor, and so on.

Executing JavaScript

There are two basic ways of evaluating JavaScript code on the console. To evaluate a block of
code, just type in the code, highlight it and hit the <Enter> key (Ctrl+Return). To evaluate a
line of code, just locate the cursor on the line you want evaluated and hit the <Enter> key
(Ctrl+Return) to obtain the results.

Any immediate results of the code evaluated will be printed to the console. Be aware that when
evaluating a block of code, only the result from the last JavaScript expression in the block will
be printed to the console. Also, the result of an expression is not the same as the value of a

5.0 �

Acrobat Forms - JavaScript Object Specification 34

variable set in the expression. For example, when evaluating the following expression where
the variable "x" is set to a value of 0:

var x = 0;

The result below will be printed to the console:

undefined

This does not mean that the value of "x" is "undefined". It just means that the expression as a
whole returns "undefined". To get the value of "x", highlight only the letter "x" in the
expression, and hit the <Enter> key to get the value 0 as result. Sometimes it's also useful to
use the console.println() method when using the console to get quick results.

The native Acrobat JavaScript edit dialog can also be used to evaluate JavaScript code. It
behaves the same way as the console except for the fact that the results will still be output to
the console. This is so that the code you are entering on the edit dialog doesn't get messed up
by the printing of evaluation results.

Parameter Help

If you give an Acrobat method an argument of "?" (including the double quotes) and execute
that method in console editor (or any internal JavaScript editor), the method will return a list
of its own arguments:

Example: In the console, type

app.response("?")

While the cursor is still on the line you entered, press either Ctrl-Enter or the Enter key on the
numeric pad. The output to the console is seen to be:

uncaught exception: Console:Exec:1: Help for App.response

====> [cQuestion: string]

====> [cTitle: string]

====> [cDefault: string]

====> [bPassword: boolean]

Parameters listed in square brackets indicate optional parameters.

Tips for Writing Reliable Code

Bugs are a fact of life in programming. Most of us would just as soon not have to deal with
any, however. You shouldn't pass up any opportunity to make your code more reliable through
good coding practices. Here are some tips for getting more gain, and less pain, from your code:

Acrobat Forms - JavaScript Object Specification 35

1. If you are new to programming, the easiest way to learn is to start by modifying somebody
else's already-debugged example code. Make one small change at a time until you under-
stand the full effect of your changes.

2. Choose meaningful names for your variables. A descriptive name like numberOfAvailable-
Colors, while long, is usually preferable to a short but cryptic name, such as num or n.

3. Be consistent about variable-naming. Some programmers like to use descriptive prefixes
on variable names, such as 'n' at the beginning of numeric variable names (like nTotal,
nMaximum, etc.), 'b' at the beginning of Booleans, 's' on strings, 'g' on the front of vari-
ables with global scope, etc. Anything you can do to introduce consistency into your code
will pay big dividends later.

4. Watch out for uninitialized variables. Declaring a variable and initializing it (assigning an
initial value to it) are two different things. If you try to use a variable that has no value (in
a comparison statement, for example), you will generate an error. Assigning a safe
"dummy value" to every variable at the time it's created will prevent this kind of error.

5. Go for legibility, not elegance. If an operation can be more clearly expressed in two JavaS-
cript statements than in one, use two statements. You're not going to win any awards for
conciseness, and in many cases, execution speed is the same (or nearly so) with two state-
ments as it is with one.

6. Use Cut and Paste operations when editing code, to save on keystrokes. The fewer
keystrokes you use, the less chance you have of introducing typos into working code.

7. Balance those brackets and parentheses. Check nested statements carefully (or write them
on more than one line) to be sure every left-paren is balanced by a right-paren and every
left-bracket is balanced by a right-bracket.

8. Make liberal use of comments. Code that is sparsely commented is hard to maintain.

9. "Factor out" complex operations into short functions. Generally speaking, it's easier to
understand and debug six two-line functions than it is to understand and debug one 12-line
function. Also, factoring out your code will pay dividends in terms of code reuse.

10. Always have working code. Make frequent backup copies as you work. Before editing an
existing piece of "good" code, make a copy of it so that you can revert to working code if
you end up with seemingly unfixable bugs in your new code.

11. Study other programmers' code every chance you get. Don't reinvent the wheel. Learn
from what others have done. Incorporate the best ideas into your own scripts. Soon, you'll
be coding like a pro yourself!

Acrobat Forms - JavaScript Object Specification 36

Using JavaScript in PDF Forms
JavaScript can be particularly useful in conjunction with AcroForms. By attaching scripts to
buttons, text fields, combo lists, and other “form widgets”, you can greatly enhance the
interactivity, appearance, and reliability of your forms. For example, you can use JavaScript to
format and validate user input; submit form data to CGI scripts on a server, or to e-mail
addresses; or create custom actions for buttons. In this section, we’ll take a look at some
common script actions and how to set up typical form interactions using JavaScript.

Organizing Your Code

As mentioned in Where Can You Use JavaScript?, it is possible to attach JavaScript to PDF
documents in several ways: at the Field level (attached to Actions, or as custom Format,
Validation, or Calculation scripts); at the level of Page Open or Page Closed actions; in links
or bookmarks; and/or at the Document level. Deciding where to place your code is usually a
simple matter: Code should usually be linked as closely as possible to the action or form field
it is designed to control. In large projects, however, you will often find that the same kinds of
operations need to be performed in many different places. For example, you may have a
recurring need to calculate the average of a group of numbers. Rather than write the same
number-averaging code over and over, it makes more sense to write one utility function that
does this task and store that function at the document level, where it can be accessed by any
other script, anywhere in your document. For example, in Tools->JavaScript->Document
JavaScripts... , you could type:

function average() {

if (arguments.length == 0) // nothing to do

return 0;

var sum = 0.0;

for (var i = 0; i < arguments.length; i++)

sum += arguments[i] - 0;

return sum/arguments.length;

}

Then, from any other code at any place in the document, you could call on this function to
perform numeric averaging.

Tip: Note that the above function makes use of the core-JavaScript arguments
array, which is available inside any JavaScript function. You can pass any
number of arguments to the average() function, and it will calculate the
average of the passed-in arguments—even if some or all of those arguments
are strings! Subtracting zero from arguments[i] is a standard JavaScript trick
for forcing the interpreter to convert arguments[i] to a number, if it's a string.
Thus, average(1,5,9) will return the same value as average("1","5","9").

Acrobat Forms - JavaScript Object Specification 37

Storing often-used functions at the document level is beneficial in several ways. It not only
reduces clutter and streamlines your field-level code but promotes code reuse and contributes
to readability (hence maintainability). “Factoring out” utility functions into document-level
scripts will make your projects more manageable and easier to debug.

Working with Fields

One very common use for JavaScripts is to perform calculations on user input. To do this, you
have to be able to fetch the value associated with a given form field. This is really a two-step
process. The JavaScript is quite straightforward:

var theField = this.getField("City");

var theValue = theField.value;

Let’s take a careful look at what’s going on in the first line of code. First, we are declaring a
new variable, theField, and assigning a value to it. On the right side of the assignment operator
(the equal sign) is this.getField("City"). The reference to 'this' is a JavaScript shortcut. In a
document-level script or field-level script, 'this' means the current document object. Among
the many predefined methods associated with the document object (see Doc Object) is the
getField() method. This method takes a string argument—a string containing the name of the
field whose properties you wish to manipulate or examine. For this example, we've assumed
that the form contains a field somewhere with the name "City".

The second line of code declares a second variable, theValue, which will actually hold the
value of the field (that is, whatever the user typed in). Field objects have their own properties
and methods (see Field Object). The 'value' property contains the field's user-assigned value.
For a text field, this value will be a string.

Field values can be altered at runtime by means of JavaScript. To do this, you have to set the
'value' property of the appropriate Field object to whatever value you want it to have. Note the
correct and incorrect ways of doing this:

var theValue = "San Jose"; // Wrong. Does not alter field.

var theField.value = "San Jose"; // Correct. Will alter field.

The first line sets our local variable, theValue, to a new value, but this is not the same as
making a permanent change to the "City" field of our form. All we have done in this case is
change the value of a local variable, not a field. To act on the field requires that we have
access to the Field Object itself. Since we obtained a reference to this object in theField, we can
use the second method shown above to alter the value shown in the form. (The form will
update its appearance immediately to show the new value.)

Another way to change the value in this field would simply be to write:

this.getField("City").value = "San Jose";

In one line of code, we have successfully overwritten the old value (if any) of our form's
"City" field with a new value.

Acrobat Forms - JavaScript Object Specification 38

Binding Field Dependencies

Another common use for JavaScript is to bind field dependencies in forms. For example,
shipping charges might depend on the "Zip Code" field of a form; or you might want to keep a
running subtotal of user purchases in a "Subtotal" field. Usually, the best way to set up these
sorts of dependencies is to use Calculation scripts. Create a new form field (or doubleclick on
an existing one) to bring up the Field Properties dialog. Make sure the field type is either Text
or Combo Box. Then select the Calculation tab within the Field Properties dialog:

To enter a Calculation script, which will be executed every time the form is updated, toggle the
Custom calculation script radio button and hit the Edit... pushbutton on the right.

Tip: Note that you can change the calculation order of fields manually, in
Acrobat, using Tools -> Forms -> Set Field Calculation Order...; or you can
set the calculation order programmatically, using the calcOrderIndex property
of the Field Object. Acrobat’s default ordering of fields may not always be
what you want.

Formatting and Validation Scripts

You can use JavaScript to automatically format and/or validate user input as it is happening.
Inside the Field Properties dialog (for Text and Combo Box fields only), you will find Format
and Validate tabs. When selected, these tabs expose dialog panes that allow you to attach

Acrobat Forms - JavaScript Object Specification 39

custom scripts to the field for formatting or validation purposes. What's the difference? Think
of format scripts as having to do with the appearance of user-entered data (for example,
whether phone number area codes have parentheses), whereas validation scripts have to do
with the underlying value of the data (the phone number itself).

If you want to filter the user's keystrokes as they happen, select the Format tab in Field
Properties and enter a custom keystroke script. In this kind of script, you will typically
examine the value of the change property of the Event Object, and either accept or reject the
value that the user has entered. The following short script checks to see that the user is
entering only numeric values, rejecting all other types of input:

if (event.change.match(/\D+/g)) {

 app.alert("Enter numeric characters only.");

 event.rc = false;

}

The condition check (the top line of this code fragment) uses the built-in match() method of
JavaScript's String class to check the user's input against a regular expression representing
non-numeric characters. (That’s what \D means.)

Tip: Regular expressions use a special symbol notation to achieve pattern-
matching based on well-defined rules. Consult any good JavaScript text for
more information on how to use regular expressions to perform powerful
string-search, replace, and match operations.

If the user enters a value that contains a non-numeric character, two things happen: First, an
alert dialog appears onscreen asking the user to enter numeric characters only; then the 'rc'
property of the Event Object is set to false, which has the effect of preventing the user’s input
from appearing onscreen.

Note that event.change is a string. It could very well refer to a lengthy string of just-pasted text,
rather than a single typed character. For that reason, we treat it like a string and check every
possible character in it.

Advanced Formatting

Sometimes, it is necessary to apply strict formatting criteria to user-entered field data. For
example, it may be necessary to limit numeric values to two decimal places of precision, or
apply a particular set of formatting criteria to user-entered dates or currency values, etc.
Accomplishing this can be trickier than it first appears. Many formatting options can be
handled using Acrobat's built-in formatting options for dates, times, currency values, etc. (See
the Format tab in Field Properties.) But occasionally you may need to supplement Acrobat's
built-in filters with custom scripts of your own. There are two sources of help to consider here.
First, be aware of the fact that the Util Object class offers several built-in methods that can be

Acrobat Forms - JavaScript Object Specification 40

helpful in performing formatting. For example, the printx method can be used to apply
formatting to strings of numbers:

var v = "aaa14159697489zzz";

v = util.printx("9 (999) 999-9999", v);

In this instance, the string "aaa14159697489zzz" ends up formatted as "1 (415) 969–7489".
(See printx for more information.) Likewise, the printd and scand methods are useful for
formatting dates according to various criteria. The C-language standby printf is also available.

A second source of help for carrying out low-level formatting consists of the utility functions
in the AForm.js file, found in the JavaScripts directory (Acrobat->JavaScripts). This Adobe-
supplied file contains numerous convenience functions and utilities for carrying out
manipulation of date strings and numeric values. For example, the function AFMakeNumber()
attempts to make a number out of a string that may or may not use a period as the separator.
(In many parts of the world, a comma is used instead.) The source code for this and many other
utility functions is given in AForm.js.

Tip: Note that AForm.js is loaded automatically whenever Acrobat (or Reader)
runs. All of the global variables and functions contained in AForm.js are
available to your scripts at runtime.

PDF Is Not HTML

If you are used to writing JavaScript code for HTML web pages, you may be tempted (from
time to time) to call on methods like window.open() or document.write(). You'll find, however,
that many of the objects, methods, and properties you're accustomed to working with in a
browser environment either don't work or don't exist at all in PDF JavaScript. That's because
JavaScript for PDF runs inside Acrobat or Acrobat Reader. The runtime interpreter, in this
case, isn't in the browser. The objects and methods you use in PDF JavaScript are scoped to
the PDF document itself, not to an HTML page.

Whether you realized it before or not, many of the objects and methods you are used to seeing
in HTML-based JavaScript are not part of the core language. Rather, they are part of the
client-side extensions to the core language. Server-based JavaScript, likewise, makes use of
other “added in” methods and objects, relevant to the server environment. These are server-
side extensions. PDF, in turn, has its own objects and methods. Always remember that the code
you write for an HTML page executes in the browser; the code you write for server-side
JavaScript executes in the server; and JavaScript for PDF documents executes in Acrobat (or
Acrobat Reader). The methods available in each case differ.

This also means, of course, that any JavaScript you write for an HTML page cannot “see
inside” a PDF document. Nor can the code you write for a PDF document see inside an HTML
page. (However, both types of code can communicate back to the server.)

Acrobat JavaScript Object Specification 41

What’s New For 5.0

Object Properties Methods

ADBC Object getDataSourceList(),
newConnection()

Annot Object alignment, AP,
arrowBegin, arrowEnd,
attachIcon, author,
contents,doc,
fillColor, hidden, modDate,
name, noteIcon, noView,
page, point,
popupRect, print, points,
print, rect, readOnly, rotate,
strokeColor, textFont, type,
soundIcon, width

destroy(), setProps(), setProps()

App Object activeDocs, fs, plugIns,
viewerVariation

addMenuItem(), addSubMenu(),
clearInterval(), clearTimeOut(),
listMenuItems(), listToolbarButtons(),
newDoc(), openDoc(), popUpMenu(),
setInterval(), setTimeOut()

Bookmark
Object

children, doc, name, open,
parent, style

createChild(),execute(), insertChild(),
remove()

Color Object convert(), equal()

Connection
Object

newStatement(), getTableList(),
getColumnList()

Data Object creationDate creationDate, modDate, MIMEType,
name, path, size

Acrobat JavaScript Object Specification 42

Doc Object bookmarkRoot, icons, info,
layout, securityHandler,
selectedAnnots, sounds,
templates, URL

addAnnot(), addField(), addIcon(),
addThumbnails(), addWeblinks(),
bringToFront(), closeDoc(),
createDataObject(), createTemplate(),
deletePages(),
deleteSound(), exportAsXFDF(),
exportDataObject(), extractPages(),
flattenPages(),
getAnnot(), getAnnots(),
getDataObject(), getIcon(), getPageBox(),
getPageLabel(), getPageNthWord(),
B: This method will throw an exception if
the document security is set to prevent
content extraction.(), getPageRotation(),
getPageTransition(), getSound(),
importAnXFDF(), importDataObject(),
importIcon(), importSound(),
importTextData(), insertPages(),
movePage(), print(), removeDataObject(),
removeField(), removeIcon(),
removeTemplate(), removeThumbnails(),
removeWeblinks(), replacePages(),
saveAs(), selectPageNthWord(),
setPageBoxes(), setPageLabels(),
setPageRotations(), setPageTransitions(),
submitForm(), syncAnnotScan()

Event Object changeEx, keyDown,
targetName

Field Object buttonAlignX,
buttonAlignY,
buttonPosition,
buttonScaleHow,
buttonScaleWhen,
currentValueIndices,
doNotScroll,
doNotSpellCheck,
exportValues, fileSelect,
multipleSelection, rect,
strokeColor,
submitName,
valueAsString

browseForFileToSubmit(),
buttonGetCaption(), buttonGetIcon(),
buttonSetCaption(), buttonSetIcon(),
checkThisBox(), defaultIsChecked(),
isBoxChecked(), isDefaultChecked(),
setAction(), signatureInfo(),
signatureSign(), signatureValidate()

Object Properties Methods

Acrobat JavaScript Object Specification 43

FullScreen
Object

backgroundColor,
clickAdvances, cursor,
defaultTransition,
escapeExits, isFullScreen,
loop, timeDelay,
transitions,
usePageTiming, useTimer

Global Object subscribe()

Identity Object corporation, email,
loginName, name

Index Object available, name, path,
selected

PlugIn Object certified, loaded, name,
path, version

PPKLite
Signature
Handler Object

appearances, isLoggedIn,
loginName, loginPath,
name, signInvisible,
signVisible, uiName

login(),logout(), newUser(),
setPasswordTimeout(),

Report Object size, absIndent, color Report(), writeText(), breakPage(),
divide(), indent (), outdent(), open(),
save(),mail()

Search Object available, indexes,
matchCase, maxDocs,
maxDocs, proximity,
proximity, refine, soundex,
stem

addIndex(), getIndexForPath(), query(),
removeIndex()

Security Object handlers,
validateSignaturesOnOpen

getHandler()

Object Properties Methods

Acrobat JavaScript Object Specification 44

Other 5.0 Changes
This manual contains an extensive appendix entitled A Short Acrobat JavaScript FAQ. If
particular importance are the sections How can I create a form field programmatically?, Quick
Reference: Forms and How can I create an Annotation programmatically? which summarize how the
numerous properties and methods (both old and new) can can be use to create form fields and
annotations (also called comments). Many interesting examples and programming tips are
contained in these sections.

In addition to the new objects, properties and methods outlined in the table above, there has
been a number of other changes and enhancements that should be noted.

Added: The console can now act as an editor and can execute JavaScript code, see the section
entitled Interactive JavaScript Console.

Changed/Enhanced: The following properties and methods have been enhanced:
App.language, App.execMenuItem; Event.type; Doc.exportAsFDF, Doc.print, Doc.submitForm;
Field.buttonImportIcon, Field.textFont, Field.getItemAt, Field.value; Util.printd. The section
related to Event Object has been greatly enhanced to facilitate better understanding of the
Acrobat JavaScript Event model.

Deprecated: The following properties and methods have been deprecated: App.fullscreen,
App.numPlugIns, App.getNthPlugInName; Doc.author, Doc.creationDate, Doc.creator, Doc.getNth-
Template, Doc.keywords, Doc.modDate, Doc.numTemplates, Doc.producer, Doc.spawnPage-
FromTemplate, Doc.title; Field.hidden; Tts.soundCues, Tts.speechCues.

Spell Object available,
dictionaryNames,
dictionaryOrder,
domainNames

addDictionary(), addWord(),
check(), checkText(), checkWord(),
removeDictionary(), removeWord(),
userWords()

Statement
Object

columnCount, rowCount execute(), getColumn(),
getColumnArray(), getRow(),
nextRow()

Template
Object

hidden, Although reading
this property is valid,
setting this property in
Acrobat Reader will
generate an exception.

spawn()

Object Properties Methods

Acrobat JavaScript Object Specification 45

ADBC Object

The Acrobat Database Connectivity (ADBC) plug-in allows JavaScripts inside of PDF
documents to access databases through a consistent object model that is identical across
platforms. The object model is based on general principles used in the object models for the
ODBC and JDBC APIs. Like ODBC and JDBC, ADBC is a means of communicating with a
database though SQL or Structured Query Language.

ADBC is a Windows-only feature and requires ODBC (Open Database Connectivity from
Microsoft Corporation) to be installed on the client machine.

Security �: It is important to note that ADBC provides no security for any of the
databases it is programmed to access. It is the responsibility of the database
administrator to keep all data secure.

The ADBC Object is a global object whose methods allow a JavaScript to create database
connection contexts or connections. In addition to the ADBC Object, described below, there are
several related objects as well:

5.0 �

Object Brief Description

ADBC Object An object through which a list of accessible databases
can be obtained and a connection can be made to one of
them.

Connection Object An object through which a list of tables in the connected
database can be obtained.

Statement Object An object through which SQL statements can be
executed and rows retrieved based on the query.

Acrobat JavaScript Object Specification 46

ADBC properties

SQL Type

The ADBC object has several constant properties representing various SQL Types:

The type property of the Column Object and type property of the ColumnInfo Object both return
this SQL Type property.

JavaScript Type

The ADBC object has several constant properties representing various JavaScript data types.

The methods getColumn and getColumnArray of the Statement Object both use these types.

5.0 �

Name value Name value

SQLT_BIGINT 0 SQLT_LONGVARCHAR 10

SQLT_BINARY 1 SQLT_NUMERIC 11

SQLT_BIT 2 SQLT_REAL 12

SQLT_CHAR 3 SQLT_SMALLINT 13

SQLT_DATE 4 SQLT_TIME 14

SQLT_DECIMAL 5 SQLT_TIMESTAMP 15

SQLT_DOUBLE 6 SQLT_TINYINT 16

SQLT_FLOAT 7 SQLT_VARBINARY 17

SQLT_INTEGER 8 SQLT_VARCHAR 18

SQLT_LONGVARBINARY 9

5.0 �

Name value Name value

Numeric 0 Time 4

String 1 Date 5

Binary 2 TimeStamp 6

Boolean 3

Acrobat JavaScript Object Specification 47

ADBC methods

getDataSourceList

Parameters: None
Returns: Array

The getDataSourceList method is used to obtain information about the databases accessible
from a given system. It takes no parameters and returns a (possibly empty) array containing a
DataSourceInfo Object for each accessible database on the system. This method never fails but
may return a zero-length array.

The properties of the DataSourceInfo Object are listed in the table below.

See newConnection for an example.

newConnection

Parameters: cDSN, [cUID], [cPWD]
Returns: connection object | null

The newConnection method is used to create a Connection Object associated with the database
identified by the cDSN (Data Source Name) parameter. Optionally, the cUID parameter can
supply a user ID and possibly a password, cPWD. On success, this method returns a
Connection object. On failure, it returns null.

Example:
// First, get the array of DataSourceInfo Objects available on the system

var aList = ADBC.getDataSourceList();

5.0 �

DataSourceInfo Object
The DataSourceInfo object is an object that contains very basic information about a particular
database.

Property Type Access Description

name string R A string that represents the identifying name of a
database. This string could be passed to
newConnection to establish a connection to the
database that the DataSourceInfo object is associated
with.

description string R A string that contains database dependent information
about the database.

5.0 �

Acrobat JavaScript Object Specification 48

console.show(); console.clear();

try {

// now display them, while searching for the one named "q32000data".

var DB = "", msg = "";

if (aList != null) {

for (var i=0; i < aList.length; i++) {

console.println("Name: "+aList[i].name);

console.println("Description: "+aList[i].description);

// and choose one of interest

if (aList[i].name=="q32000data")

DB = aList[i].name;

}

}

// did we find the database?

if (DB != "") {

// yes, establish a connection.

console.println("The requested database has been found!");

var Connection = ADBC.newConnection(DB);

if (Connection == null)

throw "Not Connected!"

} else

// no, display message to console.

throw "Could not find the requested database.";

} catch (e) {

console.println(e);

}

// alternatively, we could simple connect directly.

var Connection = ADBC.newConnection("q32000data");

Acrobat JavaScript Object Specification 49

Annot Object
The functionality of the Acrobat Annotation Plug-in is exposed to JavaScript methods through
the Annot Object.

The Annot object represents any particular Acrobat annotation (that is, an annotation created
using the Acrobat annotation tool, or by using addAnnot method from the Doc Object). The
types of annotations available are Circle, FileAttachment, FreeText, Highlight, Ink, Line,
Sound, Square, Squiggly, Stamp, StrikeOut, Text and Underline. (There is no user interface to
the Squiggly annot type; Squiggly can be accessed only through JavaScript.)

In addition to addAnnot, used for the creation of annotations, there are two other Doc Object
methods for gathering annotations from documents, getAnnot and getAnnots

Note also that the section How can I create an Annotation programmatically? provides detailed
examples of most all annotations and JavaScript techniques.

Note: The user interface in Acrobat refers to annotations as comments.

Annotation Access from JavaScript

Before an Annotation can be accessed, it must be “bound” to a JavaScript variable through a
method provided by Doc Object methods interface:

var a = this.getAnnot(0, "Important");

This example allows the script to now manipulate the annotation named “Important” on page 1
(zero-based page numbering system) via the variable a. For example, the following code

var thetype = a.type; // read property

a.author = "John Q. Public"; // write property

first stores the type of annotation in the variable thetype, then changes the author to "John Q.
Public".

Annot Object: Quick Reference

Annotation Types Properties

All types type, rect, page, author, name,
contents, modDate

Circle point, popupRect, fillColor,
strokeColor, width

FileAttachment print, attachIcon

Acrobat JavaScript Object Specification 50

Annot Properties

alignment

Type: Number Annots: FreeText Access: R/W

FreeText alignment, fillColor, rotate,
strokeColor, textFont, textSize,
width

Highlight quads, strokeColor, point,
popupRect

Ink gestures, strokeColor, point,
popupRect, width

Line points, arrowBegin, arrowEnd,
point, popupRect, fillColor,
strokeColor, width

Sound print, soundIcon

Square point, popupRect, fillColor,
strokeColor, width

Squiggly quads, strokeColor, point,
popupRect

Stamp point, popupRect, AP

StrikeOut quads, strokeColor, point,
popupRect

Text print, noteIcon, point,
popupRect

Underline quads, strokeColor, point,
popupRect

5.0 � �

Annot Object: Quick Reference

Annotation Types Properties

Acrobat JavaScript Object Specification 51

The property controls the alignment of the text for a FreeText annotation.

See the section on FreeText Annotations for an example of the use of the alignment property.

AP

Type: String Annots: Stamp Access: R/W

The value of this property is the named appearance of the stamp to be used in displaying a
stamp annotation. The names of the standard stamp annotations are "Approved", "AsIs",
"Confidential", "Departmental", "Draft", "Experimental", "Expired", "Final", "ForComment",
"ForPublicRelease", "NotApproved", "NotForPublicRelease", "Sold" and "TopSecret".

Example:
var annot = this.addAnnot({

page: 0,

type: "Stamp",

author: "A. C. Robat",

name: "myStamp",

rect: [400, 400, 550, 500],

contents: "Try it again, this time with order and method!",

AP: "NotApproved"

});

Note: The name of a particular stamp can be found by opening the PDF file in the
Stamps folder that contains the stamp in question. Now open the menu File >
Form > Page Templates, a listing of all appearances and their names can
then be seen. For a list of stamp names currently in use in the document, see
the icons property of the Doc Object.

arrowBegin

Type: String Annots: Line Access: R/W

Alignment Value

Left aligned 0

Centered 1

Right aligned 2

5.0 � �

5.0 � �

Acrobat JavaScript Object Specification 52

The value of arrowBegin determines the line cap style which specifies the shape to be used at
the beginning of a Line annotation. Permissible values are "Circle", "ClosedArrow",
"Diamond", "None" (the default), "OpenArrow" and "Square". See arrowEnd and setProps (for
an example), as well as the section on Line Annotations.

arrowEnd

Type: String Annots: Line Access: R/W

The value of arrowEnd determines the line cap style which specifies the shape to be used at the
end of a Line annotation Permissible values are "Circle", "ClosedArrow", "Diamond", "None"
(the default), "OpenArrow" and "Square". See arrowBegin and setProps (for an example), as
well as the section on Line Annotations.

attachIcon

Type: String Annots: FileAttachment Access: R/W

The value of this property is the name of an icon to be used in displaying the annotation.
Recognized values are "Paperclip", "PushPin" (the default), "Graph", and "Tag".

author

Type: String Annots: all Access: R/W

The author of the annotation.

See contents for an example of usage.

contents

Type: String Annots: all Access: R/W

The contents of any annotation having a popup can be accessed through this property. In the
case of Sound and FileAttachment annotations, the contents property specifies the text to be
displayed as the description of the sound or file attachment.

5.0 � �

5.0 � �

5.0 � �

5.0 � �

Acrobat JavaScript Object Specification 53

Example:
var annot = this.addAnnot({

page: 0,

type: "Text",

point: [400,500],

author: "A. C. Robat",

contents: "Call Smith to get help on this paragraph.",

noteIcon: "Help"

});

See also the addAnnot method.

doc

Type: doc object Annots: all Access: R

This property returns the Doc Object of the document in which the annotation resides.

Example:
var inch = 72;

var annot = this.addAnnot({

type: "Square",

rect: [1*inch, 3*inch, 2*inch, 3.5*inch]

});

/* displays, e.g., "file:///C|/Adobe/Annots/myDoc.pdf" */

console.println(annot.doc.URL);

fillColor

Type: Color Annots: Circle, Square, Line, FreeText Access: R/W

This property sets the background color for the Circle, Square, Line and FreeText annotations.
Values are defined by using transparent, gray, RGB or CMYK color. Refer to the Color Arrays
section for information on defining color arrays and how values are used with this property.

For an example, see Circle and Square Annotations.

5.0 �

5.0 � �

Acrobat JavaScript Object Specification 54

gestures

Type: Array Annots: Ink Access: R/W

An array of arrays, each representing a stroked path. Each array is a series of alternating x and y coordi-
nates in Default User Space, specifying points along the path.When drawn, the points are connected by
straight lines or curves in an implementation-dependent way. See “Ink Annotations” in the PDF Refer-
ence, page 415, for more details.

See Ink Annotations for an extensive example.

hidden

Type: Boolean Annots: all Access: R/W

If hidden is set to true, then the annotation is not shown and there is no user interaction,
display or printing of the annotation.

modDate

Type: Date Annots: all Access: R

This property returns the last modification date for the annotation.

Example:
// This example prints the modification date to the console

console.println(util.printd("mmmm dd, yyyy", annot.modDate));

name

Type: String Annots: all Access: R/W

The name of an annotation can be used by getAnnot to find and access the properties and
methods of the annotation.

5.0 � �

5.0 � �

5.0 �

5.0 � �

Acrobat JavaScript Object Specification 55

Example:
// This code locates the annotation named "myNote" and appends a comment.

var gannot = this.getAnnot(0, "myNote");

gannot.contents += "\r\rDon’t forget to check with Smith";

noteIcon

Type: String Annots: Text Access: R/W

The value of this property is the name of an icon to be used in displaying the annotation.
Recognized values of noteIcon are "Comment", "Help", "Insert", "Key", "Note" (the default),
"NewParagraph", and "Paragaph".

See the contents property for an example and the section entitled Text Annotations.

noView

Type: Boolean Annots: all Access: R/W

If noView is set to true, then the annotation is hidden, but if the annotation has an appearance,
that appearance should be used for printing only.

page

Type: Integer Annots: all Access: R/W

This property is the page on which the annotation resides. The code, for example,

annot.page = 2;

moves the Annot object, annot, from its current page to page 3 (zero-based page numbering
system).

point

Type: Array Annots: Text, Sound, FileAttachment Access: R/W

5.0 � �

5.0 � �

5.0 � �

5.0 � �

Acrobat JavaScript Object Specification 56

An Array of two numbers, [xul, yul] which specifies the upper left-hand corner in default,
user’s space, of an annotation’s Text, Sound, or FileAttachment icon.

Example:
var annot = this.addAnnot({

page: 0,

type: "Text",

point: [400,500],

contents: "Call Smith to get help on this paragraph.",

popupRect: [400,400,550,500],

popupOpen: true,

noteIcon: "Help"

});

See also addAnnot and noteIcon.

points

Type: Array Annots: Line Access: R/W

An Array of two points, [[x1, y1], [x2, y2]], specifying the starting and ending coordinates of
the line in Default User Space.

Example:
var annot = this.addAnnot({

type: "Line",

page: 0,

author: "A. C. Robat",

contents: "Look at this again!",

points: [[10,40],[200,200]],

})

See addAnnot, arrowBegin, arrowEnd and setProps and Line Annotations.

popupOpen

Type: Boolean Annots: all but Sound, FreeText, FileAttachment Access: R/W

If popupOpen is true then the popup text note will appear open when the page is displayed.

See the print property for an example.

5.0 � �

5.0 � �

Acrobat JavaScript Object Specification 57

popupRect

Type: Array Annots: all but FreeText, FileAttachment, Sound Access: R/W

The Array consists of four numbers [xll, yll, xur, yur] specifying the lower-left x, lower-left y,
upper-right x and upper-right y coordinates—in Default User Space—of the rectangle of the
popup annotation associated with a parent annotation and defines the location of the popup
annotation on the page.

See the print property for an example.

print

Type: Boolean Annots: all Access: R/W

If print property indicates whether the annotation should be printed. When set to true, the
annotation will be printed.

quads

Type: Array Annots: Highlight, StrikeOut,Underline, Squiggly Access: R/W

An array of 8 x n numbers specifying the coordinates of n quadrilaterals in Default User Space.
Each quadrilateral encompasses a word or group of contiguous words in the text underlying the
annotation. See Table 7.19, page 414 of the PDF Reference for more details. The quads for a
word can be obtained through calls to the getNthTemplate.

See getNthTemplate for an example.

rect

Type: Array Annots: all Access: R/W

The Array consists of four numbers [xll, yll, xur, yur] specifying the lower-left x, lower-left y,
upper-right x and upper-right y coordinates—in Default User Space—of the rectangle defining
the location of the annotation on the page. See also popupRect.

5.0 � �

5.0 � �

5.0 � �

5.0 � �

Acrobat JavaScript Object Specification 58

readOnly

Type: Boolean Annots: all Access: R/W

When readOnly is set to true, this indicates that the annotation should display, but not interact
with the user.

rotate

Type: Integer Annots: FreeText Access: R/W

The property rotate is the number of degrees (0, 90, 180, 270) the annotation is rotated
counter-clockwise relative to the page. The Icon based annotations do not rotate, this property
is only significant for FreeText annotations.

strokeColor

Type: color Annots: all Access: R/W

This property sets the appearance color of the annotation. Values are defined by using
transparent, gray, RGB or CMYK color. In the case of a FreeText annotation, strokeColor sets
the border and text colors. Refer to the Color Arrays section for information on defining color
arrays and how values are used with this property.

Example:
// Make a text note red

var annot = this.addAnnot({type: "Text"});

annot.strokeColor = color.red;

textFont

Type: String Annots: FreeText Access: R/W

The textFont property determines the font that is used when laying out text in a FreeText
annotation. Valid fonts are defined as properties of the "font" object, as listed in the textFont
property of the Field object:

5.0 � �

5.0 � �

5.0 � �

5.0 � �

Acrobat JavaScript Object Specification 59

An arbitrary font can be used when laying out a FreeText annotation by setting the value of
textFont equal to a string that represents the PostScript name of the font.

The following example illustrates the use of this property and the font object.

// Create FreeText annotation with Helvetica
var annot = this.addAnnot({

page: 0,

type: "FreeText",

textFont: font.Helv, // or, textFont: "Viva-Regular",

textSize: 10

rect: [200, 300, 200+150, 300+3*12], // height for three lines

width: 1,

alignment: 1

});

textSize

Type: Integer Annots: FreeText Access: R/W

This property determines the text size (in points) that is used in a FreeText annotation. Valid
text sizes include zero and the range from 4 to 144 inclusive. A text size of zero means that the
largest point size that will allow all the text data to still fit in the annotations’s rectangle
should be used. See textFont for an example.

type

Type: String Annots: all Access: R

This property can be used to determine the type of annotation. The valid values of type are
"Circle", "FileAttachment", "FreeText", "Highlight", "Ink", "Line", "Sound", "Square",
"Squiggly", "Stamp", "StrikeOut", "Text" and "Underline".

Note: The “type” of the annotation can only be set within the object literal
argument of the addAnnot method .

soundIcon

Type: String Annots: Sound Access: R/W

5.0 � �

5.0 � �

Acrobat JavaScript Object Specification 60

The value of this property is the name of an icon to be used in displaying the annotation. A
value of "Speaker" is recognized.

width

Type: Number Annots: Square, Circle, Line, Ink, FreeText Access: R/W

The border width in points. If this value is 0, no border is drawn. The default value is 1.

Annot Methods

destroy

Parameters: None
Returns: Nothing

This method destroys the annot, removing it from the page. The object becomes invalid.

Example:
// remove all "FreeText" annotations on page 0

var annots = this.getAnnots({ nPage:0 });

for (var i = 0; i < annots.length; i++)

if (annots[i].type == "FreeText")

annots[i].destroy();

getProps

Parameters: None
Returns: object literal

This methods returns an object literal of the properties of the annotation. The object literal is
just like the one passed to addAnnot. This method can be used to copy an annotation.

Example:
var annot = this.addAnnot({

 type: "Text",

 rect: [40, 40, 140, 140]

5.0 � �

5.0 � �

5.0 � �

5.0 �

Acrobat JavaScript Object Specification 61

});

// Make a copy of the properties of annot

var copy_props = annot.getProps();

// Now create a new annot with the same properties on every page

var numpages = this.numPages;

for (var i=0; i < numpages; i++) {

var copy_annot = this.addAnnot(copy_props);

// but move it to page i

copy_annot.page=i;

}

setProps

Parameters: object literal
Returns: annotation object

Sets many properties of the annotation simultaneously. The object literal is just like the one
passed to addAnnot.

Example:
var annot = this.addAnnot({type: "Line"})

annot.setProps({

page: 0,

points: [[10,40],[200,200]],

strokeColor: color.red,

author: "A. C. Robat",

contents: "Check with Jones on this point.",

popupOpen: true,

popupRect: [200, 100, 400, 200], // place rect at tip of the arrow

arrowBegin: "Diamond",

arrowEnd: "OpenArrow"

})

5.0 � �

Acrobat JavaScript Object Specification 62

App Object
The App object is a static JavaScript object that defines a number of Acrobat specific functions
plus a variety of utility routines and convenience functions.

App Object Properties

activeDocs

Type: Array Access: R

This property returns an array containing the Doc Object for each active document open in the
viewer. If no documents are active, activeDocs returns nothing, or has the same behavior as
d=new Array(0) in core JavaScript.

With this property, it is possible to perform cross-document operations.

Example:
/* This example searches among the open documents for the document with a title

of "C", then it inserts a button in that document using addField */
var d = app.activeDocs;

for (var i=0; i < d.length; i++)

if (d[i].info.Title == "myDoc") {

 var f = d[i].addField("myButton", "button", 0 , [20, 100, 100, 20]);

f.setAction("MouseUp","app.beep(0)");

f.fillColor=color.gray;

}

calculate

Type: Boolean Access: R/W

If this property is set to true, it will allow calculations to be performed. If set to false, this
property prevents all calculations in all documents from occurring. Its default value is true.
See also the document calculate property which supersedes this property in later versions.

5.0

�

Acrobat JavaScript Object Specification 63

focusRect

Type: Boolean Access: R/W

This property turns on and off the focus rectangle. The focus rectangle is the faint dotted line
around buttons, check boxes, radio buttons, and signatures to indicate that the form field has
the keyboard focus.

formsVersion

Type: Number Access: R

This property indicates the version number of the forms software running inside the viewer.
Use this method to determine whether objects, properties, or methods in newer versions of the
software are available if you wish to maintain backwards compatibility in your scripts. See
Document Conventions for more details.

Example:
if (typeof app.formsVersion != "undefined" && app.formsVersion >= 4.0) {

// Perform version specific operations here.

}

fs

Type: object Access: R

Returns the FullScreen Object which can be used to access the fullscreen properties.

Example:
// This code puts the viewer into fullscreen (presentation) mode.

app.fs.isFullScreen = true;

See also isFullScreen in the FullScreen Object.

fullscreen

Type: Boolean Access: R/W

4.05 �

4.0

5.0 �

�

Acrobat JavaScript Object Specification 64

This property puts the Acrobat viewer in fullscreen mode vs. regular viewing mode.

Example:
// on mouse up, set to fullscreen mode

app.fullscreen = true;

In the above example, the Adobe Acrobat viewer is set to fullscreen mode when app.fullscreen
is set to true. If app.fullscreen was false then the default viewing mode would be set. The
default viewing mode is defined as the original mode the Acrobat application was in before full
screen mode was initiated.

Note: A PDF document being viewed from within a web browser cannot be put into
fullscreen mode. Fullscreen mode can, however, be initiated from within the
browser, but will not occur unless there is a document open in the Acrobat
viewer application; in this case, the document open in the viewer will
appear in fullscreen, not the PDF document open in the web browser.

See the isFullScreen property of the FullScreen Object; this property supersedes App.fullscreen in
later versions. See also App.fs, which returns a FullScreen Object which can be used to access
the fullscreen properties.

language

Type: String Access: R

This property defines the language of the running Acrobat Viewer. It returns the following
strings:

String Language String Language

CHS Chinese Simplified KOR Korean

CHT Chinese Traditional JPN Japanese

DAN Danish NLD Dutch

DEU German NOR Norwegian

ENU English PTB Brazilian Portuguese

ESP Spanish SUO Finnish

FRA French SVE Swedish

ITA Italian

Acrobat JavaScript Object Specification 65

numPlugIns

Type: Number Access: R

This property indicates the number of plug-ins that have been loaded by Acrobat. See the
plugIns property which supersedes this property in later versions.

openInPlace

Type: Boolean Access: R/W

This property determines whether cross-document links are opened in the same window or
opened in a new window.

platform

Type: String Access: R

This property returns the platform that the script is currently executing on. Valid values
include "WIN", "MAC", and "UNIX".

plugIns

Type: Array Access: R

Used to determine which plug-ins are currently installed in the viewer. Returns an array of
PlugIn Objects.

Example:
// Get array of PlugIn Objects

var aPlugins = app.plugIns;

// Get number of plugins

var nPlugins = aPlugins.length;

// Enumerate names of all plugins

for (var i = 0; i < nPlugins; i++)

console.println("Plugin \#"+i+" is " + aPlugins[i].name);

�

5.0 �

5.0

Acrobat JavaScript Object Specification 66

toolbar

Type: Boolean Access: R/W

This property allows a script to show or hide both the horizontal and vertical Acrobat tool bars.
It does not hide the tool bar in external windows (i.e. in an Acrobat window within a Web
browser).

Example:
// Opened the document, now remove the toolbar.

app.toolbar = false;

toolbarHorizontal

Type: Boolean Access: R/W

This property allows a script to show or hide the Acrobat horizontal tool bar. It does not hide
the tool bar in external windows (i.e. in an Acrobat window within a Web browser).

Note: Acrobat 5.0 has drastically changed the notion of what a toolbar is and
where it can live within the frame of the application. This property has been
deprecated as a result. If accessed, it will act like the toolbar property.

toolbarVertical

Type: Boolean Access: R/W

This property allows a script to show or hide the Acrobat vertical tool bar. It does not hide the
tool bar in external windows (i.e. in an Acrobat window within a Web browser).

Note: Acrobat 5.0 has drastically changed the notion of what a toolbar is and
where it can live within the frame of the application. This property has been
deprecated as a result. If accessed, it will act like the toolbar property.

�

� �

� �

Acrobat JavaScript Object Specification 67

viewerType

Type: String Access: R

This property determines if the running Acrobat Viewer is Reader vs. the full product. Its value
is "Reader" or "Exchange" respectively.

viewerVariation

Type: String Access: R

This property indicates the packaging of the running Acrobat Viewer. Its value is "Reader",
"Fill-In", "Business Tools", or "Full".

viewerVersion

Type: Number Access: R

This property indicates the version number of the current viewer.

App Object Methods

addMenuItem

Parameters: cName, [cUser], cParent, [nPos], cExec, [cEnable], [cMarked]
Returns: Nothing

Adds a menu item to the application.

cName is the language independent name of the menu item. This language independent name is
used to access the menu item for other methods (e.g. hideMenuItem).

cUser is the user string (language dependent name) to display as the menu item name. If cUser
is not specified then cName is used.

cParent is the name of the parent menu item. Its submenu will have the new menu item added
to it. If cParent has no submenu then an exception is thrown.

Menu item names can be discovered via the listMenuItems method. Language independent
names for menu items can also be obtained from the Acrobat Viewer plug-in API On-Line
Reference (See Useful Documents).

5.0

4.0

5.0 �

Acrobat JavaScript Object Specification 68

nPos is the position within the submenu to locate the new menu item. The default behavior is
to append to the end of the submenu. Specifying nPos as 0 will add to the top of the submenu.

cExec is an expression string to evaluate when the menu item is selected by the user.

cEnable is an expression string that determines whether or not to enable the menu item. The
default is that the menu item is always enabled. This expression should set event.rc to false to
disable the menu item.

cMarked is an expression string that determines whether or not the menu item has a check
mark next to it. Default is that the menu item is not marked. This expression should set
event.rc to false to uncheck the menu item and true to check it.

Example:
// This example adds a menu item to the top of the file submenu that puts up an

// alert dialog displaying the active document title. This menu is only

// enabled if a document is opened.

app.addMenuItem({ cName: "Hello", cParent: "File",

cExec: "app.alert(app.activeDocs[0].info.title, 3);",

cEnable: "event.rc = app.activeDocs.length > 0",

nPos: 0});

See also the addSubMenu, execMenuItem, hideMenuItem, and listMenuItems methods.

Security �: This method can only be executed during application initialization or
console events. See the Event Object for a discussion of Acrobat JavaScript
events.

addSubMenu

Parameters: cName, [cUser], cParent, [nPos]
Returns: Nothing

Adds a menu item with a submenu to the application.

cName is the language independent name of the menu item. This language independent name is
used to access the menu item for hideMenuItem, for example.

cUser is the user string (language dependent name) to display as the menu item name. If cUser
is not specified then cName is used.

cParent is the name of the parent menu item to receive the new submenu.

5.0 �

Acrobat JavaScript Object Specification 69

Menu item names can be discovered via the listMenuItems method. Language independent
names for menu items can also be obtained from the Acrobat Viewer plug-in API On-Line
Reference (See Useful Documents).

nPos is the position within the parent’s submenu to locate the new submenu. Default is to
append to the end of the parent’s submenu. Specifying nPos as 0 will add to the top of the
parent’s submenu.

Example:
// This example adds a submenu "One" to the top of the File submenu.

// It has two additional menu items that display an alert message.

app.addSubMenu({ cName: "One", cParent: "File" });

app.addMenuItem({ cName: "Two", cParent: "One",

 cExec: "app.alert('Two', 3);"});

app.addMenuItem({ cName: "Three", cParent: "One",

 cExec: "app.alert('Three', 3);"});

See also the addMenuItem, execMenuItem, hideMenuItem, and listMenuItems methods.

Security �: This method can only be executed during application initialization or
console events. See the Event Object for a discussion of Acrobat JavaScript
events.

alert

Parameters: cMsg, [nIcon], [nType]
Returns: nButton

This method displays an alert dialog on the screen. The minimum required parameter is a
string, cMsg, containing the message to be displayed. Optionally, an icon type can be specified
by using the nIcon parameter. The following is a list of icons and their associated values:

Note: The Macintosh OS does not distinguish between warnings and questions, so
it only has three different types of icons.

Icon Value

Error (default) 0

Warning 1

Question 2

Status 3

Acrobat JavaScript Object Specification 70

Additionally, a button group type can be specified by using the nType parameter:

This method returns the type of the button that was pressed by the user:

beep

Parameters: [nType]
Returns: None

This method causes the system to play a sound. The various sounds and the values used are as
follows:

Note: On Apple Macintosh and UNIX systems the beep type is ignored.

clearInterval

Parameters: oInterval

Button Group Value

OK (default) 0

OK, Cancel 1

Yes, No 2

Yes, No, Cancel 3

Button Type Value

OK 1

Cancel 2

No 3

Yes 4

Message Type Value

Error 0

Warning 1

Question 2

Status 3

Default (the default) 4

Acrobat JavaScript Object Specification 71

Returns: Nothing

This method cancels a previously registered interval, oInterval, such an interval is initially set
by the setInterval method.

See also the setTimeOut and clearTimeOut methods. An example of use follows the description
of the setTimeOut method.

clearTimeOut

Parameters: oTime
Returns: Nothing

This method cancels a previously registered time-out interval, oTime; such an interval is
initially set by the setTimeOut method.

See also the setInterval, and clearInterval methods. An example of use follows the description of
the setTimeOut method.

execMenuItem

Parameters: cMenuItem
Returns: Nothing

This method executes the specified menu item.

Menu item names can be discovered via the listMenuItems method. Language independent
names for menu items can also be obtained from the Acrobat Viewer plug-in API On-Line
Reference (See Useful Documents).

Example:
/* This example executes File->Open menu item. It will display a dialog to the

** user asking for the file to be opened. */

app.execMenuItem("Open");

See also the addMenuItem, addSubMenu, hideMenuItem methods. The listMenuItems method
conveniently lists the names of all menu items to the console.

5.0

5.0

4.0

5.0 Additions

Acrobat JavaScript Object Specification 72

App.execMenuItem("SaveAs") saves the current file to the user’s hard drive; a “SaveAs”
dialog opens to ask the user to select a folder and file name. Executing the “SaveAs” menu
item will save the current file as a linearized file, provided “Save As creates Fast View Adobe
PDF files” is checked in the Edit > Preferences > General > Options dialog.

Security �: App.execMenuItem("SaveAs") can only be executed during batch,
console or menu events. See the Event Object for a discussion of Acrobat
JavaScript events.

Note: If the user preferences are set to “Save As creates Fast View Adobe PDF
files”, do not expect a form object to survive a "SaveAs"; field objects are no
longer valid, and an exception may be thrown when trying to access a field
object immediately after a "SaveAs". See examples that follow.

Example:
var f = getField("myField");

app.execMenuItem("SaveAs"); // Assume preferences set to save linearized

f.value = 3; // exception thrown, field not updated

Example:
var f = getField("myField");

app.execMenuItem("SaveAs"); // Assume preferences set to save linearized

var f = getField("myField"); // re-get the field after the linear save

f.value = 3; // field updated to a value of 3

Note: For security reasons, scripts are not allowed to execute the "Quit" menu
item.

getNthPlugInName

Parameters: nIndex
Returns: cName

This method returns the name of the nth plug-in that has been loaded by the viewer. See also
the numPlugIns property.

See the plugIns property which supersedes this property in later versions.

�

Acrobat JavaScript Object Specification 73

goBack

Parameters: None
Returns: Nothing

Use this function to go to the previous view on the view stack. This is equivalent to pressing
the go back button on the Acrobat tool bar.

goForward

Parameters: None
Returns: Nothing

Use this function to go to the next view on the view stack. This is equivalent to pressing the go
forward button on the Acrobat tool bar.

hideMenuItem

Parameters: cName
Returns: Nothing

This method allows an integrator to customize the look of the Acrobat viewer by removing the
menu item specified by cName.

Menu item names can be discovered via the listMenuItems method. Language independent
names for menu items can also be obtained from the Acrobat Viewer Plug-In API On-line
Reference (Technical Note #5191). See Useful Documents.

See also the addMenuItem, addSubMenu, execMenuItem, and listMenuItems methods.

Security �: This method can only be executed during application initialization or
console events. See the Event Object for a discussion of Acrobat JavaScript
events.

hideToolbarButton

Parameters: cName
Returns: Nothing

4.0 �

4.0 �

Acrobat JavaScript Object Specification 74

This method allows a forms integrator to customize the look of the Acrobat viewer by
removing the toolbar button specified by cName.

Menu item names can be discovered via the listToolbarButtons method. Language independent
names for toolbar buttons can be obtained from the Acrobat Viewer Plug-In API On-line
Reference (Technical Note #5191). See Useful Documents.

Example: A file named, myConfig.js, containing the script

app.hideToolbarButton("Hand");

is placed in one of the Folder Level JavaScripts folders. When the Acrobat viewer is started, the
"Hand" icon does not appear.

Security �: This method can only be executed during application initialization or
console events. See the Event Object for a discussion of Acrobat JavaScript
events.

listMenuItems

Parameters: None
Returns: Nothing

Lists all menu item names in the application to the console. Useful for writing scripts and
debugging.

Language independent names for menu items can also be obtained from the Acrobat Viewer
plug-in API On-Line Reference (Technical Note #5191). See Useful Documents.

Example: List all menu item names to the console.

console.show();

app.listMenuItems();

See also the addMenuItem, addSubMenu, execMenuItem, and hideMenuItem methods.

listToolbarButtons

Parameters: None
Returns: Nothing

5.0

5.0

Acrobat JavaScript Object Specification 75

Lists all toolbar button names in the application to the console. Useful for writing scripts and
debugging.

Language independent names for menu items can also be obtained from the Acrobat Viewer
plug-in API On-Line Reference(Technical Note #5191). See Useful Documents.

See also the hideToolbarButton method.

mailMsg

Parameters: bUI, cTo, [cCc], [cBcc], [cSubject], [cMsg]
Returns: Nothing

This method sends out an e-mail message with or without user interaction depending on the
value of bUI. If it is set to true then the rest parameters are used to seed the compose new
message window that is displayed to the user.

If bUI is set to false, the cTo parameter is required and others are optional. You must use a
semicolon ";" to separate multiple recipients in cTo, cCc, cBcc parameters. The length limit for
cSubject and cMsg is 64k bytes.

Example:
/* This will pop up the compose new message window */

app.mailMsg(true);

/* This will send out the mail to fun1@fun.com and fun2@fun.com */

app.mailMsg(false, "fun1@fun.com; fun2@fun.com", "", "", "This is the subject",
"This is the body of the mail.");

/* Or the same message can be sent as follows:

app.mailMsg({bUI: false,

cTo: "fun1@fun.com; fun2@fun.com",
 cSubject: "This is the subject",

cMsg: "This is the body of the mail."});

Note: On Windows: The client machine must have its default mail program
configured to be MAPI enabled in order to use this method.

newDoc

Parameters: [nWidth], [nHeight]
Returns: Doc object

4.0 �

5.0 � �

Acrobat JavaScript Object Specification 76

This method creates a new document in the Acrobat Viewer and returns the Doc Object of the
newly created document. The optional parameters, nWidth and nHeight, are used to specify the
media box dimensions in points of the document. The default values are nWidth = 612 and
nHeight = 792.

Example: Add a "New" item to the Acrobat File menu. Within "New", there are three menu
items: "Letter", "A4" and "Custom". This script should go in a Folder Level JavaScripts folder.

app.addSubMenu({ cName: "New", cParent: "File", nPos: 0 })

app.addMenuItem({ cName: "Letter", cParent: "New", cExec:

"var d = app.newDoc();"});

app.addMenuItem({ cName: "A4", cParent: "New", cExec:

"app.newDoc(420,595)"});

app.addMenuItem({ cName: "Custom...", cParent: "New", cExec:

"var nWidth = app.response({ cQuestion: 'Enter Width in Points',\

cTitle: 'Custom Page Size'});"

+"if (nWidth == null) nWidth = 612;"

+"var nHeight = app.response({ cQuestion: 'Enter Height in Points',\

cTitle: 'Custom Page Size'});"

+"if (nHeight == null) nHeight = 792;"

+"app.newDoc({ nWidth: nWidth, nHeight: nHeight })"});

The code is a little incomplete. In the case of the "Custom" menu item, additional lines can be
inserted to prevent the user from entering the empty string, or a value too small or too large.
See the “General Implementation Limits", page 546, of the PDF Reference for the current
limitations.

Security �: This method can only be executed during batch, console or menu events.
See the Event Object for a discussion of Acrobat JavaScript events.

openDoc

Parameters: cPath, [oDoc]
Returns: Doc object

This method opens the PDF document specified by cPath; the return value is the Doc Object of
the document opened by this method, which can, in turn, be used by the script to call methods,
or to get or set properties in the newly opened document.

cPath is a device independent path to the document to be opened. The path can be a relative
path if the second parameter, oDoc, gets passed. The parameter oDoc and target document,
must both live in the default file system.

5.0 �

Acrobat JavaScript Object Specification 77

oDoc is a Doc Object to use as a base to resolve a relative cPath.

Example:
/* This example opens another document, inserts a prompting message

into a text field, sets the focus in the field, then closes the

current document. */

var otherDoc = app.openDoc("/c/temp/myDoc.pdf");

otherDoc.getField("name").value="Enter your name here: "

otherDoc.getField("name").setFocus();

this.closeDoc();

Same example as above, but a relative path is given.

var otherDoc = app.openDoc("myDoc.pdf", this);

otherDoc.getField("name").value="Enter your name here: "

otherDoc.getField("name").setFocus();

this.closeDoc();

Note: The current document as well as the target document must be
in the default file system.

See also the closeDoc and setFocus methods.

popUpMenu

Parameters: [cItem | Array] ...
Returns: cItem

This method creates a pop-up menu at the current mouse position. The menu will contain one
or more items as specified by the supplied arguments. The method returns the name of the
menu item that was selected. The menu item name "-" is reserved to draw a separator line in
the menu.

If the argument is a string then it is listed in the menu as a menu item.

If the argument is an array then it appears as a submenu where the first element in the array is
the parent menu item. This array can contain further submenus if desired.

var cItem = app.popUpMenu("Introduction", "-", "Chapter 1", ["Chapter 2",

"Chapter 2 Start", "Chapter 2 Middle", ["Chapter 2 End", "The End"]]);

app.alert("You chose the \"" + cItem + "\" menu item");

5.0

Acrobat JavaScript Object Specification 78

Note: It is important, given the platform dependent interaction between the mouse
and the popup menu, to only invoke this method on a Field/Mouse Down
event. If it is issued at any other time, it may work on some platforms and
not on others.

response

Parameters: cQuestion, [cTitle], [cDefault], [bPassword]
Returns: cResponse or null on cancel

This method displays a dialog box containing a question and an entry field for the user to reply
to the question.

cQuestion is the question to be posed to the user.

cTitle is an optional title to appear in the dialog’s window title.

cDefault is a default value for the answer to the question. If not specified, no default value is
presented.

bPassword, if true, indicates that the user’s response should show as asterisks (*) or bullets (•)
to mask the response, which might be sensitive information.

The return value is a string containing the user’s response. If the user presses the cancel button
on the dialog the response is the null object.

Example:
var cResponse = app.response({ cQuestion: "How are you today?", cTitle:

"Your Health Status", cDefault: "Fine" });

if (cResponse == null)

app.alert("Thanks for trying anyway.");

else

app.alert("You responded, \""+cResponse+"\", to the health question.",3);

setInterval

Parameters: cExpr, nMilliseconds
Returns: timeout object

This method registers an expression to be evaluated each time the specified period elapses
(specified in milliseconds). For example, to create a simple color animation on a field called
"Color" that changes every second:

5.0

Acrobat JavaScript Object Specification 79

function DoIt() {

var f = this.getField("Color");

var nColor = (timeout.count++ % 10 / 10);

// Various shades of red.

var aColor = new Array("RGB", nColor, 0, 0);

f.fillColor = aColor;

}

timeout = app.setInterval("DoIt()", 1000);

// Add a property to our timeout object so that DoIt() can keep a count going.

timeout.count = 0;

See also the clearInterval, setTimeOut and clearTimeOut methods. See the setTimeOut method for
an additional example.

setTimeOut

Parameters: cExpr, nMilliseconds
Returns: timeout object

This method registers an expression to be evaluated after a specific period elapses (specified in
milliseconds).

See also the clearTimeOut, setInterval and clearInterval methods.

Example: This example creates a simple running marquee. Assume there is a text field named
"marquee". The default value of this field is "Adobe Acrobat version 5.0 will soon be here!".

// Document level JavaScript function

function runMarquee() {

var f = this.getField("marquee");

var cStr = f.value; // get field value

var aStr = cStr.split(""); // convert to an array

aStr.push(aStr.shift()); // move first char to last

cStr = aStr.join(""); // back to string again

f.value = cStr; // put new value in field

}

// Insert a mouse up action into a "Go" button

run = app.setInterval("runMarquee()", 100);

// stop after a minute

stoprun=app.setTimeOut("app.clearInterval(run)",6000);

// Insert a mouse up action into a "Stop" button

try {

app.clearInterval(run);

5.0

Acrobat JavaScript Object Specification 80

app.clearTimeOut(stoprun);

}catch (e) {}

Here, we protect the "Stop" button code with a try/catch. If the user presses the "Stop" button
without having first pressed the "Go", run and stoprun will be undefined, and the "Stop" code
will throw an exception. When the exception is thrown, the catch code is executed. In the
above example, code does nothing if the user presses "Stop" first.

Acrobat JavaScript Object Specification 81

Bookmark Object
A bookmark object represents a node in the bookmark tree that appears in the bookmarks
navigational panel. Bookmarks are typically used as a “table of contents” allowing the user to
navigate quickly to topics of interest.

Bookmark Object Properties

children

Type: Array Access: R

Returns an array of bookmark objects that are the children of this bookmark in the bookmark
tree. See also the parent property and the bookmarkRoot property of the Doc Object.

Example:
/* Dump all bookmarks in the document. */

function DumpBookmark(bm, nLevel)

{

var s = "";

for (var i = 0; i < nLevel; i++)

s += " ";

console.println(s + "+-" + bm.name);

if (bm.children != null)

 for (var i = 0; i < bm.children.length; i++)

DumpBookmark(bm.children[i], nLevel + 1);

}

console.clear();

console.show();

console.println("Dumping all bookmarks in the document.");

DumpBookmark(this.bookmarkRoot, 0);

color

Type: Array Access: R/W

This property specifies the color for a bookmark. Values are defined by using gray, RGB or
CMYK color. Refer to the Color Arrays section for information on defining color arrays and
how values are used with this property. See also the style property.

Example: The following fun script will color the top level bookmark red, green and blue.

5.0

5.0 � �

Acrobat JavaScript Object Specification 82

var bm = bookmarkRoot.children[0]

bm.color = color.black;

var C = new Array(1, 0, 0);

var run = app.setInterval(

'bm.color = ["RGB",C[0],C[1],C[2]]; C.push(C.shift());', 1000);

var stoprun=app.setTimeOut(

"app.clearInterval(run); bm.color=color.black",12000);

Note: This property is read-only in Acrobat Reader.

doc

Type: Object Access: R

This property is the Doc Object that the bookmark resides in.

name

Type: String Access: R/W

This property is the text string for the bookmark that the user sees in the navigational panel.

open

Type: boolean Access: R/W

This property determines whether the bookmark shows its children in the navigation panel
(open) or whether the children sub-tree is collapsed (closed).

parent

Type: object | null Access: R

5.0

5.0 �

5.0 �

5.0

Acrobat JavaScript Object Specification 83

Returns the parent bookmark of the bookmark or null if the bookmark is the root bookmark.
See also the children property and the bookmarkRoot property of the Doc Object.

style

Type: Integer Access: R/W

This property specifies the style for the bookmark’s font: 0 indicates normal, 1 is italic, 2 is
bold, and 3 is bold-italic. See also the color property.

Note: This property is read-only in Acrobat Reader.

Bookmark Object Methods

createChild

Parameters: cName, [cExpr], [nIndex]
Returns: Nothing

Creates a new child bookmark at the specified location.

cName is the name of the bookmark that the user will see in the navigation panel.

cExpr is an expression to be evaluated whenever the user clicks on the bookmark. Default is no
expression. This is equivalent to creating a bookmark with a JavaScript action, see the PDF
Reference, “JavaScript Action” for more details.

nIndex is the zero-based index into the children array of the bookmark to create the new child
at. Default is zero.

See also the children property and the insertChild and remove methods.

Example:
// Create a bookmark at the top of the bookmark panel that takes you to the

// next page in the document.

bookmarkRoot.createChild("Next Page", "this.pageNum++");

5.0 � �

5.0 �

Acrobat JavaScript Object Specification 84

execute

Parameters: None
Returns: Nothing

Executes the action associated with this bookmark. This can have a variety of behaviors. See
the PDF Reference, Section 7.5.3, “Actions Types” for a list of common action types.

See also the createChild property.

insertChild

Parameters: oBookmark, [nIndex]
Returns: Nothing

Inserts the specified bookmark as a child of this bookmark. If the bookmark already exists in
the bookmark tree it is unlinked before inserting it back into the tree. In addition, the insertion
is checked for circularities and disallowed if one exists. This prevents users from inserting a
bookmark as a child or grandchild of itself.

bookmark is a bookmark object to add as the child of this bookmark.

nIndex is the zero-based index into the children array of the bookmark to insert the new child
at. The default is zero.

See also the children property and the createChild and remove methods.

Example:
// Take the first child bookmark and move it to the end of the bookmarks.

var bm = bookmarkRoot.children[0];

bookmarkRoot.insertChild(bm, bookmarkRoot.children.length);

remove

Parameters: None
Returns: Nothing

Removes the bookmark (and all its children) from the bookmark tree.

See also the children property and the createChild and insertChild methods.

Example:

5.0

5.0 �

5.0 �

Acrobat JavaScript Object Specification 85

// Remove all bookmarks from the document.

bookmarkRoot.remove();

Acrobat JavaScript Object Specification 86

Color Arrays
A color is represented in JavaScript as an array containing 1, 2, 4, or 5 elements corresponding
to a transparent, gray, RGB, or CMYK color space, respectively. The first element in the array
is a string denoting the color space type. The subsequent elements are numbers that range
between zero and one inclusive. The following table illustrates this:

For example, the color red can be represented as ["RGB", 1, 0, 0].

Invalid strings or insufficient elements in a color array cause the color to be interpreted as the
color black.

A transparent color space indicates a complete absence of color and will allow those portions
of the document underlying the current field to show through.

Colors in the gray color space are represented by a single value—the intensity of achromatic
light. In this color space, 0 is black, 1 is white, and intermediate values represent shades of
gray (i.e. ".5", ".7" etc.).

Colors in the RGB color space are represented by three values: the intensity of the red, green,
and blue components in the output. RGB is commonly used for video displays because they are
generally based on red, green, and blue phosphors.

Colors in the CMYK color space are represented by four values. These values are the amounts
of the cyan, magenta, yellow, and black components in the output. This color space is
commonly used for color printers, where they are the colors of the inks traditionally used in
four-color printing. Only cyan, magenta, and yellow are necessary, but black is generally used
in printing because black ink produces a better black than a mixture of cyan, magenta, and
yellow inks, and because black ink is less expensive than the other inks.

Color Object

The color object is a convenience static object that defines the basic colors. These colors are
accessed in JavaScripts via the color object. Use this object whenever you want to set a
property or call a method that require a color array. The color object is defined in AForm.js.

Color Space String # of Additional
Elements

Transparent "T" 0

Gray "G" 1

RGB "RGB" 3

CMYK "CMYK" 4

Acrobat JavaScript Object Specification 87

Color Properties

The color object defines the following colors and there associated keywords:

Example:
// This example sets the text color of the field to red

// if the value of the field is negative, else it sets it

// to black.

var f = event.target; /* field that the event occurs at */

f.target.textColor = event.value < 0 ? color.red : color.black;

Color Methods

convert

Parameters: color array, cColorspace
Returns: color array

This method converts the colorspace and color values specified by the color object to the
specified colorspace. Note that conversion to the gray colorspace is lossy in the same fashion
that displaying a color TV signal on a black and white TV is lossy. For printing pundits: the
conversion of RGB to CMYK does not take into account any black generation or under color
removal parameters.

Color Object Keyword Equivalent JS Version

Transparent color.transparent ["T"]

Black color.black ["G" 0]

White color.white ["G" 1]

Red color.red ["RGB" 1 0 0]

Green color.green ["RGB" 0 1 0]

Blue color.blue ["RGB" 0 0 1]

Cyan color.cyan ["CMYK" 1 0 0 0]

Magenta color.magenta ["CMYK" 0 1 0 0]

Yellow color.yellow ["CMYK" 0 0 1 0]

Dark Gray color.dkGray ["G" 0.25] 4.0

Gray color.gray ["G" 0.5] 4.0

Light Gray color.ltGray ["G" 0.75] 4.0

5.0

Acrobat JavaScript Object Specification 88

equal

Parameters: color array 1, color array 2
Returns: bEqual

This method compares two color arrays to see if they are the same. The routine will perform
conversions, if necessary, to determine if the two colors are indeed equal (i.e. ["RGB" 1 1 0]
is equal to ["CMYK" 0 0 1 0]).

var f = this.getField("foo");

if (color.equal(f.textColor, f.fillColor))

app.alert("Foreground and background color are the same!");

5.0

Acrobat JavaScript Object Specification 89

Connection Object

The Connection object is the object that encapsulates a session with a database. Connection
objects are returned by the newConnection method of the ADBC Object.

Connection methods

newStatement

Parameters: None
Returns: a statement object | null

The newStatement method is used to create a Statement Object through which database
operations may be performed. It returns a Statement object on success or null on failure.

Example:
// get a connection object, see newConnection
var con = ADBC.newConnection("q32000data");

// now get a statement object

var statement = con.newStatement();

var msg = (statement == null) ?

"Failed to obtain newStatement!" : "newStatement Object obtained!";

console.println(msg);

getTableList

Parameters: None
Returns: An array of objects

The getTableList method is used to get information about the various tables in a database. It
returns an array of TableInfo Objects. This method never fails but may return a zero-length
array.

5.0 �

5.0 �

5.0 �

Acrobat JavaScript Object Specification 90

Below is a table that lists the properties of the TableInfo Object returned by the getTableList method.

Example
/* Assuming we have a Connection object (con) already in hand

 (see newStatement and newConnection), get the list of tables */
var tableInfo = con.getTableList();

console.println("A list of all tables in the database.");

for (var i = 0; i < tableInfo.length; i++) {

console.println("Table name: "+ tableInfo[i].name);

console.println("Description: "+ tableInfo[i].description);

}

getColumnList

Parameters: cName
Returns: An array of columninfo objects

The getColumnList method is used to get information about the various columns in the table

cName is the name of the table to get column information about.

Returns an array of ColumnInfo Objects. This method never fails but may return a zero-length
array.

TableInfo Object
The TableInfo object contains basic information about a table.

Property Type Access Description

name string R A string that represents the identifying name of a table.
This string could be used in SQL statements to identify
the table that the TableInfo object is associated with.

description string R A string that contains database dependent information
about the table.

5.0 �

Acrobat JavaScript Object Specification 91

Below is a table that lists the properties of the ColumnInfo Object.

Example:
/* Assuming we have a Connection object (con) already in hand (see newStatement
and newConnection), get list of all column names */
var con = ADBC.newConnection("q32000data");

var columnInfo = con.getColumnList("sales");

console.println("Column Information");

for (var i = 0; i < columnInfo.length; i++) {

console.println(columnInfo[i].name);

console.println("Description: "+ columnInfo[i].description);

}

ColumnInfo Object
The ColumnInfo object contains basic information about a column of data.

Property Type Acc
ess

Description

name string R A string that represents the identifying name of a column.
This string could be used in getColumn calls to identify
the column that the ColumnInfo object is associated with.

description string R A string that contains database dependent information
about the column.

type number R A numeric value identifying the SQL Type of the data
contained in the column associated with the ColumnInfo
object.

typeName string R A string identifying the type of the data contained in the
column associated with the ColumnInfo object. This is
NOT the same information contained in the type property
as it is a database dependent string representing the
data type. This property may give useful information
about user defined data types.

Acrobat JavaScript Object Specification 92

Console Object

The Console object is a static object to access the JavaScript console for displaying debug
messages and executing JavaScript. It does not function in the Acrobat Reader.

Console Methods

show

Parameters: None
Returns: Nothing

This method shows the console window.

hide

Parameters: None
Returns: Nothing

This method closes the console window.

println

Parameters: cMessage
Returns: Nothing

This method prints the string value of cMessage to the console window with an accompanying
carriage return.

// This example prints the value of a field to the console window

var f = event.target;

console.println("Field value = " + f.value);

clear

Parameters: None
Returns: Nothing

This method clears the console windows buffer of any output.

�

Acrobat JavaScript Object Specification 93

Data Object

The Data object is the representation of an embedded file or data stream that is stored in the
document. Data objects are stored in the name tree in the document. See the section on the
Names Tree and Embedded File Streams in the PDF Reference Manual for more details.

Data objects can be inserted from the external file system, queried, and extracted. This is a
good way to associate and embed source files, meta-data, and other associated data with a
document.

See also the Doc Object dataObjects property, the Document createDataObject, exportDataObject,
getDataObject, importDataObject, and removeDataObject methods and the Data Object.

Data Object Properties

creationDate

Type: Date Access: R

This property is the creation date of the file that was embedded.

modDate

Type: Date Access: R

This property is the modification date of the file that was embedded.

MIMEType

Type: String Access: R

This property is the MIME type assoicated with this data object.

name

Type: String Access: R

This property is the name associated with this data object.

Example:
console.println("Dumping all data objects in the document.");

var d = this.dataObjects;

for (var i = 0; i < d.length; i++)

console.println("DataObject[" + i + "]=" + d[i].name);

5.0

Acrobat JavaScript Object Specification 94

path

Type: String Access: R

This property is the device independent path to the file that was embedded.

size

Type: Number Access: R

This property is the size, in bytes, of the uncompressed data object.

Acrobat JavaScript Object Specification 95

Doc Object
The JavaScript Doc object provides the interfaces between a PDF document open in the viewer
and the JavaScript interpreter. It provides methods and properties of the PDF document.

Doc Access from JavaScript

Accessing the Doc object from JavaScript can be done in a variety of ways. The most common
method is through this Object, which usually points to the Doc object of the underlying
document. Some properties and methods return Doc objects; for example, activeDocs, openDoc,
or extractPages all return Doc objects.

Example:
// Access through "this"

var nPages = this.numPages; // get number of pages in "this" document

var aCrop = this.getPageBox(); // get the crop box for "this" document

/* Access through return values: From one document, open, modify, save and

** close another. */

var myDoc = app.openDoc("myNovel.pdf", this); // path relative to "this" doc

myDoc.info.Title = "My Great Novel";

myDoc.saveAs(myDoc.path);

myDoc.closeDoc(true);

JavaScript is executed as a result of some event. For each event, an Event Object is created. A
Doc object can often be accessed through the target property of the Event object. The target
property returns the Field Object that initiated the event for all mouse, focus, blur, calculate,
validate, and format events; Doc object access is then through the doc property of Field Object.
For all other events, the target property points to the Doc object.

Example: Access through the Event Object.

// In Mouse, calculate, validate, format, focus, blur events

var myDoc = event.target.doc;

// In all other events (e.g., batch or console events)

var myDoc = event.target;

Doc Object Properties

author

Type: String Access: R/W

� � �

Acrobat JavaScript Object Specification 96

This property defines the author of the document. See also the document info property which
supersedes this property in later versions.

Note: This property is read-only in Acrobat Reader.

baseURL

Type: String Access: R/W

Base URL for the document. The base URL is used to resolve relative web links within the document.

console.println("Base URL was " + this.baseURL);

this.baseURL = "http://www.adobe.com/products/";

console.println("Base URL is " + this.baseURL);

See also the URL property.

bookmarkRoot

Type: object Access: R

Returns the root bookmark for the bookmark tree. This bookmark is not displayed to the user;
it is simply a programmatic construct to access the tree and access the child bookmarks.

See the Bookmark Object an example of usage.

calculate

Type: Boolean Access: R/W

If this property is set to true, it will allow calculations to be performed for this document. If
set to false, this property prevents all calculations from happening for this document. Its
default value is true. This property supersedes the application level calculate property whose
use is now discouraged.

5.0 �

5.0

4.0

Acrobat JavaScript Object Specification 97

creator

Type: String Access: R

This property defines the creator of the document (e.g. "Adobe FrameMaker", "Adobe
PageMaker", etc.). See also the document info property which supersedes this property in later
versions.

creationDate

Type: Date Access: R

This property defines the document’s creation date. See also the document info property which
supersedes this property in later versions.

dataObjects

Type: Array Access: R

Returns an array comprised of all the named data objects in the document.

Example:
var d = this.dataObjects;

for (var i = 0; i < d.length; i++)

console.println("Data Object[" + i + "]=" + d[i].name);

See also the Document dataObjects property, the Document createDataObject, exportDataObject,
getDataObject, importDataObject, and removeDataObject methods and the Data Object.

delay

Type: Boolean Access: R/W

This property can delay the redrawing of any appearance changes to every field in the
document. It is generally used to buffer a series of changes to fields before requesting that the
fields regenerate their appearance. Setting the property to true forces all changes to be queued
until delay is reset to false. Once set to false then all the fields on the page are re-drawn.

�

�

5.0

4.0

Acrobat JavaScript Object Specification 98

See also the field level delay property.

dirty

Type: Boolean Access: R/W

This property identifies whether the document has been dirtied as the result of a changes to the
document (and therefore needs to be saved). It is useful to reset the dirty flag in a document
when performing changes that do not warrant saving, for example, updating a status field in the
document.

var f = this.getField("Status");

var b = this.dirty;

f.value = "Press the reset button to clear the form.";

this.dirty = b;

external

Type: Boolean Access: R

This property indicates whether the current document is being viewed in the Acrobat
application or in an external window (such as a web browser).

filesize

Type: Integer Access: R

This property determines the file size of the document in bytes.

icons

Type: Array Access: R

Returns an array of named Icon Objects that are present in the document level named icons tree.

Example:
if (this.icons == null)

console.println("No named icons in this doc");

else

�

4.0

5.0

Acrobat JavaScript Object Specification 99

console.println("There are " + this.icons.length

+ " named icons in this doc");

Here is a summary listing of the properties of the icon object

Example:
// list all named icons

for (var i = 0; i < this.icons.length; i++) {

console.println("icon[" + i + "]=" + this.icons[i].name);

}

See also the addIcon, getIcon, importIcon, and removeIcon methods of the Doc Object, the
buttonGetIcon, buttonImportIcon, and buttonSetIcon methods of the Field Object, and the Icon
Object.

info

Type: object Access: R

For the Acrobat Reader, this property returns an object with properties from the document
information dictionary in the PDF file. Standard entries include Title, Author, Subject,
Keywords, Creator, Producer, CreationDate, ModDate, and Trapped. See Table 8.2 on page
475, Entries in a document information dictionary, in the PDF Reference, for more details.

Example:
// get title of document

var docTitle = this.info.Title;

Type: object Access: R/W

Within Acrobat, properties for the info object are read/write access and setting a property in
this object will dirty the document. Additional document information fields can be added by

Icon Object
An icon object is an opaque representation of a Form XObject appearance stored in the document.
Icons are mostly used with Field Objects of type button.

Property Type Access Description

name string R This property returns the name of the icon. An icon may
or may not have a name depending on whether it exists
the document level named icons tree.

5.0

5.0 � �

Acrobat JavaScript Object Specification 100

setting non-standard properties. Writing to any property in this object in the Acrobat Reader
will throw an exception.

Example: The following script,

this.info.Title = "JavaScript, The Definitive Guide";

this.info.ISBN = "1-56592-234-4";

this.info.PublishDate = new Date();

for (var i in this.info)

console.println(i + ": "+ this.info[i]);

could produce the following output:

CreationDate: Mon Jun 12 14:54:09 GMT-0500 (Central Daylight Time) 2000

Producer: Acrobat Distiller 4.05 for Windows

Title: JavaScript, The Definitive Guide

Creator: FrameMaker 5.5.6p145

ModDate: Wed Jun 21 17:07:22 GMT-0500 (Central Daylight Time) 2000

SavedBy: Adobe Acrobat 4.0 Jun 19 2000

PublishDate: Tue Aug 8 10:49:44 GMT-0500 (Central Daylight Time) 2000

ISBN: 1-56592-234-4

Note: Standard entries are case insensitive, that is, doc.info.Keywords is the same
as doc.info.keywords.

keywords

Type: String Access: R/W

This property specifies the keywords that describe the document (e.g. "forms", "taxes",
"government"). See also the document info property which supersedes this property in later
versions.

Note: This property is read-only in the Acrobat Reader.

� � �

Acrobat JavaScript Object Specification 101

layout

Type: String Access: R/W

Changes the page layout of the current document. Valid values for this property include "SinglePage",
"OneColumn", "TwoColumnLeft", and "TwoColumnRight".

modDate

Type: Date Access: R

This property contains the date the document was last modified. See also the document info
property which supersedes this property in later versions.

numFields

Type: Integer Access: R

This property returns the total number of fields in the document. See also the getNthFieldName
method.

numPages

Type: Integer Access: R

This property contains the number of pages in the document.

numTemplates

Type: Integer Access: R

This property returns the number of templates in the document (see also getNthTemplate and
spawnPageFromTemplate methods). See also the document templates property which supersedes
this property in later versions.

5.0

�

4.0

�

Acrobat JavaScript Object Specification 102

path

Type: String Access: R

This property defines the device independent path of the document, for example /c/Program
Files/Adobe/Acrobat 5.0/Help/AcroHelp.pdf. See Section 3.10.1, “File Specification Strings”,
page 108, in the PDF Reference for exact syntax of the path.

pageNum

Type: Integer Access: R/W

Use this property to get or set a page of the document. When setting the pageNum to a specific
page, remember that the values are "0" based.

// This example will go to the first page of the document.

this.pageNum = 0 ;

// This example will advance the document to the next page

this.pageNum++;

producer

Type: String Access: R

This property contains producer of the document (e.g. "Acrobat Distiller", "PDFWriter", etc.).
See also the document info property which supersedes this property in later versions.

securityHandler

Type: String | null Access: R

This property returns the name of the security handler used to encrypt the document and returns null if
there is no security handler (i.e. the document is not encrypted). For example,

console.println(this.securityHandler != null ?

"This document is encrypted with " + this.securityHandler + " security." :

"This document is unencrypted.");

could print out

Encrypted with Standard security.

�

5.0

Acrobat JavaScript Object Specification 103

if the document was encrypted with the standard security handler.

selectedAnnots

Type: Array Access: R

This property returns an array of Annot Objects corresponding to every markup annotation the
user currently has selected.

Example:
// show all the comments of selected annots in console

var aAnnots = this.selectedAnnots;

for (var i=0; i < aAnnots.length; i++)

console.println(aAnnots[i].contents);

See also, getAnnot and getAnnots.

sounds

Type: Array Access: R

Returns an array comprised of all of the named Sound Objects in the document.

Example:
var s = this.sounds;

for (i = 0; i < s.length; i++)

console.println("Sound[" + i + "]=" + s[i].name);

See also the getSound, importSound, and deleteSound methods, and the Sound Object.

spellDictionaryOrder

Type: Array Access: R/W

This property can be used to access or specify the dictionary array search order for this
document. The Spelling plug-in will search for words first in this array and then it will search
the dictionaries the user has selected on the Spelling Preference panel. The user’s preferred
order is available from the spell.dictionaryOrder property. An array of the currently installed
dictionaries can be obtained using the spell.dictionaryNames property.

5.0

5.0

5.0

Acrobat JavaScript Object Specification 104

For example, if a user is filling out a Medical Form the form designer may want to specify a
Medical dictionary to be searched first before searching the user’s preferred order.

subject

Type: String Access: R/W

This property defines the document’s subject. See also the document info property which
supersedes this property in later versions.

Note: This property is read-only in Acrobat Reader.

templates

Type: Array Access: R

This property returns an array of all of the template objects in the document.

See also the createTemplate, getTemplate, and removeTemplate methods of the Doc Object, and the
Template Object.

title

Type: String Access: R/W

This property specifies the title of the document. See also the document info property which
supersedes this property in later versions.

Note: This property is read-only in Acrobat Reader.

� � �

5.0

� � �

Acrobat JavaScript Object Specification 105

URL

Type: String Access: R

This property specifies the document’s URL. If the document is local, it will return an URL
with a "file:///" scheme. This may be different than the baseURL.

zoom

Type: Integer Access: R/W

This property is used to get or set the current page zoom level. The values allowed are 8.33%
and 1600% specified as an integer.

// This example will zoom in to twice the current zoom level.

this.zoom *= 2;

// This now sets the zoom to 200%

this.zoom = 200;

zoomType

Type: String Access: R/W

This property specifies the current zoom type of the document. Valid zoom types are: none, fit
page, fit width, fit height, and fit visible width. A convenience zoomType object that defines all
the valid zoom types is provided for use from JavaScript. It provides the following zoom types:

Example:
// This example sets the zoom type of the document to fit the width.

this.zoomType = zoomtype.fitW;

5.0

Zoom Type Keyword

NoVary zoomtype.none

FitPage zoomtype.fitP

FitWidth zoomtype.fitW

FitHeight zoomtype.fitH

FitVisibleWidth zoomtype.fitV

Preferred zoomtype.pref

Acrobat JavaScript Object Specification 106

Doc Object Methods

addAnnot

Parameters: object literal
Returns: Annot Object

This method creates an Annot Object having the given object literal. An object literal is a
generic object (see Parameter Specification for Methods) which specifies the properties of the
Annot Object annotation, such as type, rect, and page, to be created.

Example
// This example creates a "Square" annotation.

var sqannot = this.addAnnot({type: "Square", page: 0});

The above is a minimal example; sqannot will be created as annotation of type "Square"
located on page 0 (0 based page numbering).

Note: Properties not specified in the object literal are given their default values for
the specified type of annotation.

Example:
var annot = this.addAnnot({

page: 0,

type: "Square",

rect: [0, 0, 100, 100],

name: "OnMarketShare",

author: "A. C. Robat",

contents: "This section needs revision."

});

addField

Parameters: cName, cFieldType, nPageNum, oCoords
Returns: object

Creates a new form field and returns a Field Object.

cName is the name of the new field to create. This name can use the dot separator syntax to
denote a hierarchy (e.g. name.last will create a parent node, name, and a child node, last).

5.0 � �

5.0 � �

Acrobat JavaScript Object Specification 107

cFieldType is the type of form field to create. Valid types include "text", "button",
"combobox", "listbox", "checkbox", "radiobutton", or "signature".

nPageNum is the zero-based index of the page to add the field to.

oCoords is an array of four numbers in Rotated User Space that specifies the size and placement
of the form field. These four numbers are, in this order: upper-left x, upper-left y, lower-right x
and lower-right y coordinates. See also Field.rect.

Example: The following code might be used in a batch sequence to create a navigational icon
on every page of a document, for each document in a selected set of documents.

var inch = 72;

for (var p = 0; p < this.numPages; p++) {

var aRect = this.getPageBox({nPage: p});

aRect[0] += .5*inch; // position rectangle (.5 inch, .5 inch)

aRect[2] = aRect[0]+.5*inch; // from upper left hand corner of page.

aRect[1] -= .5*inch; // Make it .5 inch wide

aRect[3] = aRect[1] - 24; // and 24 points high

// now construct button field with a right arrow from ZapfDingbats

var f = this.addField("NextPage", "button", p, aRect)

f.setAction("MouseUp", "this.pageNum++");

f.delay = true;

f.borderStyle = border.s;

f.highlight = "push";

f.textSize = 0; // auto sized

f.textColor = color.blue;

f.fillColor = color.ltGray;

f.textFont = font.ZapfD

f.buttonSetCaption("\341") // a right arrow

f.delay = false;

}

See setAction for another example.

Note: For developers that use the info panel to obtain the coordinates of the
bounding rectangle, be warned, the info panel uses the upper left corner as
the origin of its coordinate system. To transform from info space to rotated
user space, simply subtract the info space y-coordinate from the onscreen
page height.

addIcon

Parameters: cName, icon object.

Acrobat JavaScript Object Specification 108

Returns: Nothing

This function adds a new named Icon Object to the document level icon tree, storing it under the
name specified by cName.

Example: This example takes an icon already attached to a form button field in the document
and assigns a name to it. This name can be used to retrieve the icon object with a getIcon for
use in another button, for example.

var f = this.getField("myButton");

this.addIcon("myButtonIcon", f.buttonGetIcon());

See also the icons property and the getIcon, importIcon and removeIcon methods of the Doc
Object, the buttonGetIcon, buttonImportIcon, and buttonSetIcon methods of the Field Object, and
the Icon Object.

addThumbnails

Parameters: [nStart], [nEnd]
Returns: Nothing

Creates thumbnails for the specified pages in the document.

nStart and nEnd are zero-based indexes that define an inclusive range of pages. If nStart and
nEnd are not specified then the range of pages is for all pages in the document. If only nStart
is specified then the range of pages is the single page specified by nStart. If only nEnd is
specified then the range of a pages is 0 to nEnd.

See also the removeThumbnails method.

addWeblinks

Parameters: [nStart], [nEnd]
Returns: integer

Scans the specified pages looking for instances of text with an http: scheme and converts them
into links with URL actions.

nStart and nEnd are zero-based indexes that define an inclusive range of pages. If nStart and
nEnd are not specified then the range of pages is for all pages in the document. If only nStart

5.0 �

5.0 � �

5.0 � �

Acrobat JavaScript Object Specification 109

is specified then the range of pages is the single page specified by nStart. If only nEnd is
specified then the range of a pages is 0 to nEnd.

Returns the number of web links added to the document.

See also the removeWeblinks method.

bringToFront

Parameters: None
Returns: Nothing

This method brings the document, open in the Viewer, to the front, if it’s not already there.

Example:
/* This example searches among the documents open in the Viewer for the

document with a title of "Annual Report" and brings it to the front */

var d = app.activeDocs;

for (var i = 0; i < d.length; i++)

if (d[i].info.Title == "Annual Report")

d[i].bringToFront();

calculateNow

Parameters: None
Returns: Nothing

Use this function to force computation of all calculation fields in the current document.

closeDoc

Parameters: [bNoSave]
Returns: false

This method closes the document corresponding to the Doc object. If bNoSave is false, the
default, the user is prompted to save the document, if it has been modified. If bNoSave is true,
the document is closed without prompting the user and without saving, even if the document
has been modified. Because this can cause data loss without user approval, use this feature
judiciously.

5.0

5.0

Acrobat JavaScript Object Specification 110

Note: It is important to use this method carefully as it is an abrupt change in the
document state that can affect any JS executing after the close. Triggering
this method off of a Page event or Document event could cause the
application to behave strangely.

createDataObject

Parameters: cName, cValue, [cMIMEType]
Returns: nothing

Data objects can be constructed adhoc. This is useful if the data is being created in JavaScript
from other sources instead of an external file (e.g. ADBC database calls).

cName is the name to associate with the data object.

cValue is a string containing the data to be embedded.

cMIMEType is the MIME type of the data. Default is "text/plain".

Example:
this.createDataObject("MyData", "This is some data.");

See also the Document dataObjects property, the Document createDataObject, exportDataObject,
getDataObject, importDataObject, and removeDataObject methods and the Data Object.

createTemplate

Parameters: cName, [nPage]
Returns: template object

Use this function to create a visible template from the specified page.

cName is the name to be associated with this page.

nPage is the zero-based index of the page to operate on. If nPage is not specified then nPage is
the first page in the document.

Returns the newly created Template Object.

See also the templates property, the getTemplate, and removeTemplate methods of the Doc Object,
and the Template Object.

5.0 � �

5.0 � � �

Acrobat JavaScript Object Specification 111

Security �: This method can only be executed during batch, console, or menu events.
See the Event Object for a discussion of Acrobat JavaScript events.

deletePages

Parameters: [nStart], [nEnd]
Returns: Nothing

Deletes pages from the document.

nStart is the zero-based index of the first page in the range of pages to be deleted. The optional
nEnd parameter indicates the last page in the range of pages to be deleted. If nEnd is not
specified then only the page specified by nStart is deleted.

Both nStart and nEnd have a default value of zero, so if this.deletePages() is executed, the first
page (page 0) will be deleted.

See also the insertPages, extractPages and replacePages methods.

Note: You cannot delete all pages in a document: there must be at least one page
remaining.

deleteSound

Parameters: cName
Returns: Nothing

This method deletes the sound object with the specified name from the document.

Example:
this.deleteSound("Moo");

See also the sounds property, the getSound and importSound methods, and the Sound Object.

5.0 � �

5.0 �

Acrobat JavaScript Object Specification 112

exportAsFDF

Parameters: [bAllFields], [bNoPassword], [aFields], [bFlags], [cPath]
Returns: Nothing

Use this method to export a FDF file to the local hard drive.

The optional bAllFields parameter indicates, if true, that all fields are exported, including
those that have no value, and if false (the default) to exclude those that currently have no
value.

The optional bNoPassword parameter indicates, if true (the default), not to include in the
exported FDF text fields that have the "password" flag set.

The optional aFields parameter is the array of field names to submit or a string containing a
single field name. If this parameter is present then only the fields indicated are exported,
except those excluded by parameter bAllFields or bNoPassword. If this parameter is omitted or
is null then all fields in the form are exported (again subject to the restrictions of bAllFields
and bNoPassword). This parameter can contain non-terminal field names in order to export an
entire subtree of fields, see the example below.

The optional bFlags parameter indicates, if true, that field flags should be included in the
exported FDF. The default is false.

The optional cPath, is a string specifying the device-independent pathname for the FDF. (See
Section 3.10.1 of the PDF Reference for a description of the device-independent pathname
format.) The pathname may be relative to the location of the current document. If the
parameter is omitted a dialog will be shown to let the user select the file to export to.

Example:

/* Export the entire form (including empty fields) with flags. */

this.exportAsFDF(true, true, null, true);

/* Export the name subtree with no flags. */

this.exportAsFDF(false, true, "name");

The example above illustrates a shortcut to exporting a whole subtree. Passing "name" as part
of the aFields parameter, exports "name.title", "name.first", "name.middle" and "name.last",
etc.

4.0 �

5.0 Additions

Acrobat JavaScript Object Specification 113

Security �: If the "cPath" parameter is specified, then this method can only be
executed during batch, console, or menu events. See the Event Object for a
discussion of Acrobat JavaScript events.

exportAsXFDF

Parameters: [bAllFields], [bNoPassword], [aFields], [cPath]
Returns: Nothing

Use this method to export an XFDF file to the local hard drive. XFDF is an XML
representation of Acrobat form data. See the Adobe CD Documentation Forms System
Implementation Notes for more details.

The optional bAllFields parameter indicates, if true, that all fields are exported, including
those that have no value, and if false (the default) to exclude those that currently have no
value.

The optional bNoPassword parameter indicates, if true (the default), not to include in the
exported XFDF text fields that have the "password" flag set.

The optional aFields parameter is the array of field names to submit or a string containing a
single field name. If this parameter is present then only the fields indicated are exported,
except those excluded by parameter bAllFields or bNoPassword. If this parameter is omitted or
is null then all fields in the form are exported (again subject to the restrictions of bAllFields
and bNoPassword).

The optional cPath, is a string specifying the device-independent pathname for the XFDF. (See
Section 3.10.1 of the PDF Reference for a description of the device-independent pathname
format.) The pathname may be relative to the location of the current document. If the
parameter is omitted a dialog will be shown to let the user select the file. If this parameter is
omitted, a dialog will be shown to let the user select the file to export to.

Security �: If the cPath parameter is specified, then this method can only be
executed during batch, console or menu events. See the Event Object for a
discussion of Acrobat JavaScript events.

5.0 �

Acrobat JavaScript Object Specification 114

exportDataObject

Parameters: cName, [cDIPath]
Returns: nothing

This method extracts the specified data object to an external file.

cName is the name of the data object to extract.

cDIPath is optional and specifies a device independent path to extract the data object to. This
path may be absolute or relative to the current document. If cDIPath is not specified then the
user will be prompted to specify a save location. See File Specification Strings in the PDF
Reference Manual for the exact syntax of the path.

Example:
// Prompt the user for a file and location to extract to.

this.extractDataObject("MyData");

// Extract to Foo.xml.

this.extractDataObject("MyData2", "../Foo.xml");

See also the Document dataObjects property, the Document createDataObject, exportDataObject,
getDataObject, importDataObject, and removeDataObject methods and the Data Object.

Security �: If the cDIPath parameter is specified, then this method can only be
executed during batch, console or menu events, or through an external call
(e.g. OLE). See the Event Object for a discussion of Acrobat JavaScript
events.

extractPages

Parameters: [nStart], [cEnd], [cPath]
Returns: doc object | null

Creates a new document consisting of pages extracted from the current document.

nStart and nEnd are zero-based indexes that define an inclusive range of pages in the source
document to extract. If nStart and nEnd are not specified then the range of pages is for all
pages in the document. If only nStart is specified then the range of pages is the single page
specified by nStart. If only nEnd is specified then the range of pages is 0 to nEnd.

cPath specifies the device-independent pathname to save the new document to. See 3.10.1 of
the PDF Reference Manual for a description of the device independent path name format. The

5.0 � �

5.0 � � �

Acrobat JavaScript Object Specification 115

path name may be relative to the location of the current document. The return value in this case
is the null object as the new document has been saved to this path and closed.

If cPath is not specified then the new document is opened in the viewer and the Doc Object for
the new document is returned by the call.

See also the deletePages, insertPages, and replacePages methods.

Example: The following batch sequence would take each of the selected files and extract each
page and save the page to a folder with an unique name. This example may be useful in the
following setting. Clients one-page bills are produced by an application and placed in a single
PDF file. It is desired to separate the pages for distribution and/or separate printing jobs.

/* Extract Pages to Folder */

// regular expression acquire the base name of file

var re = /.*\/|\.pdf$/ig;

// filename is the base name of the file Acrobat is working on

var filename = this.path.replace(re,"");

try {

for (var i = 0; i < this.numPages; i++)

this.extractPages(

{

nStart: i,

cPath: "/F/temp/"+filename+"_" + i +".pdf"

 });

} catch (e) {

console.println("Aborted: "+e)

}

Security �: If the cPath parameter is specified, then this method can only be
executed during batch, console or menu events, or through an external call
(e.g. OLE). See the Event Object for a discussion of Acrobat JavaScript
events.

flattenPages

Parameters: [nStart], [cEnd]
Returns: Nothing

Converts all annotations in the specified page range to page contents.

5.0 � �

Acrobat JavaScript Object Specification 116

nStart and nEnd are zero-based indices that define an inclusive range in the current document.
If only nStart is specified, then the page range is the single page specified by nStart. If neither
parameter is specified, then the page range is all the pages in the current document.

Note: Great care must be used when using this method. All annotations— including
form fields, comments and links— on the specified range of pages will be
flattened; they may have appearances, but they will no longer be
annotations.

getAnnot

Parameters: nPage, cName
Returns: annot object | null

This method returns the Annot Object on the given page, nPage, and with the given name,
cName. If there is no such annotation with the specified description, the method returns null.

Example:
var ann = this.getAnnot(0, "OnMarketShare");

if (ann == null)

 console.println("Not Found!")

else

 console.println("Found it! type: " + ann.type);

getAnnots

Parameters: [nPage], [nSortBy], [bReverse], [nFilterBy]
Returns: array of annot objects

This method takes the criteria set down by the optional parameters and returns an array of
Annot Objects satisfying this criteria.

If specified, nPage is the zero-based page number that causes the method to return only
annotations on the given page. If nPage is not specified then the annotations from all pages are
retrieved that meet the search criteria.

5.0

5.0

Acrobat JavaScript Object Specification 117

nSortBy, if specified, is a sort method applied to the array. The following table lists the valid
values for nSortBy:

bReverse, if true, causes the array to be reverse sorted with respect to nSortBy.

nFilterBy, if specified, causes only annots satisfying certain criteria to appear in the resultant
list. The valid values for nFilterBy are given below:

Example:
this.syncAnnotScan();

var annots = this.getAnnots({

nPage:0,

nSortBy: ANSB_Author,

bReverse: true

});

console.show();

console.println("Number of Annots: " + annots.length);

Values of nSortBy

Name Description

ANSB_None default; do not sort; equivalent to leaving nSortBy out

ANSB_Page use the page number as the primary sort criteria

ANSB_Author use the author as the primary sort criteria

ANSB_ModDate use the modification date as the primary sort criteria

ANSB_Type use the annot type as the primary sort criteria

Values of bFilterBy

Name Description

ANFB_ShouldNone default; equivalent to leaving nFilterBy out

ANFB_ShouldPrint only include annots that should print

ANFB_ShouldView only include annots that should view

ANFB_ShouldEdit only include annots that should be editable

ANFB_ShouldAppearInPanel only include annots that should appear in the
annotations pane

ANFB_ShouldSummarize only include annots that should be included in a
summarization

ANFB_ShouldExport only include annots that should be included in an
export

Acrobat JavaScript Object Specification 118

var msg = "%s in a %s annot said: \"%s\"";

for (var i = 0; i < annots.length; i++)

console.println(util.printf(msg, annots[i].author, annots[i].type,

annots[i].contents));

See also getAnnot and syncAnnotScan, especially the note that follows that method.

getDataObject

Parameters: cName
Returns: data object

This method returns the data object corresponding to the specified name.

cName is the name of the data object to get.

Example:
var d = this.getDataObject("MyData");

console.show();

console.clear();

for (var i in d)

console.println("MyData." + i + "=" + d[i]);

See also the Document dataObjects property, the Document createDataObject, exportDataObject,
getDataObject, importDataObject, and removeDataObject methods and the Data Object.

getField

Parameters: cName
Returns: Field object

Use this function to map a Field Object in the PDF document to a JavaScript variable. The
cName parameter is the name of the field of interest. This function returns a Field Object
representing the form field in the PDF document.

Example:
// Make a text field multiline and triple its height

var f = this.getField("myText");

var aRect = f.rect; // get bounding rectangle

f.multiline = true; // make it multiline

var height = aRect[1]-aRect[3]; // calculate height

aRect[3] -= 2* height; // triple the height of the text field

f.rect = aRect; // and make it so

5.0

Acrobat JavaScript Object Specification 119

getIcon

Parameters: cName
Returns: icon object

This function returns an Icon Object associated with the specified name in the document or null
if no icon of that name exists.

Example: The following is a custom keystroke script from a combobox. The face names of the
items in the combobox are the names of some of the icons that populate the document. As the
user chooses different items from the combobox, the corresponding icon appears as the button
face of the field "myPictures".

if (!event.willCommit) {

var b = this.getField("myPictures");

var i = this.getIcon(event.change);

b.buttonSetIcon(i);

}

See buttonSetIcon for a more elaborate variation on this example.

See also the icons property and the addIcon, importIcon, and removeIcon methods of the Doc
Object, the buttonGetIcon, buttonImportIcon, and buttonSetIcon methods of the Field Object, and
the Icon Object.

getNthFieldName

Parameters: nIndex
Returns: String

Use this function to obtain the nth field name in the document (see the numFields property).

Example:
// Enumerate through all of the fields in the document.

for (var i = 0; i < this.numFields; i++)

console.println("Field[" + i + "] = " + this.getNthFieldName(i));

getNthTemplate

Parameters: nIndex

5.0

4.0

� �

Acrobat JavaScript Object Specification 120

Returns: String

Use this function to retrieve the name of the nth template within in the document.

This method is superceded by use of the Doc Object’s templates property and the getTemplate
method, and the Template Object object in later versions.

getPageBox

Parameters: [cBox], [nPage]
Returns: array of four numbers

cBox can be one of "Art", "Bleed", "BBox", "Crop" (the default), or "Trim". For definitions of
these boxes please see Section 8.6.1, “Page Boundaries”, page 524, in the PDF Reference.
Default is "Crop".

nPage is the zero-based index of the page to operate on. If nPage is not specified then nPage is
the first page in the document.

Returns a rectangle in Rotated User Space that encompasses the named box for the page.

See also the setPageBoxes method.

Example: Get the dimensions of the Media box.

var aRect = this.getPageBox("Media");

var width = aRect[2] - aRect[0];

var height = aRect[1] - aRect[3];

console.println("Page 1 has a width of " + width + " and a height of " +

height);

getPageLabel

Parameters: [nPage]
Returns: String

Returns page label information for the specified page.

nPage is the zero-based index of the page to operate on. If nPage is not specified then nPage is
the first page in the document.

See also the setPageLabels method for a good example.

5.0

5.0

Acrobat JavaScript Object Specification 121

getPageNthWord

Parameters: [nPage], [nWord], [bStrip]
Returns: String

Returns the nth word on the page.

nPage is the zero-based index of the page to operate on. If nPage is not specified then nPage is
the first page in the document.

nWord is the zero-based index of the word to obtain. If nWord is not specified then nWord is
the first word on the page.

bStrip is a boolean indicating that punctuation and whitespace should be removed from the
word before returning. Default is true.

See also the getNthTemplate, getPageNumWords, and selectPageNthWord methods.

Security �: This method will throw an exception if the document security is set to
prevent content extraction.

getPageNthWordQuads

Parameters: [nPage], [nWord]
Returns: Array of quads

Returns the quads list for the nth word on the page. The quads can be used for constructing text
markup annotations, Underline, StrikeOut, Highlight and Squiggly.

nPage is the zero-based index of the page to operate on. If nPage is not specified then nPage is
the first page in the document.

nWord is the zero-based index of the word to obtain. If nWord is not specified then nWord is
the first word on the page.

See also the B: This method will throw an exception if the document security is set to prevent content
extraction. method.

Example: The following example underlines the fifth word on the second page of a document.

var annot = this.addAnnot({

page: 1,

type: "Underline",

5.0

5.0 �

Acrobat JavaScript Object Specification 122

quads: this.getPageNthWordQuads(1, 4),

author: "A. C. Acrobat",

contents: "Fifth word on second page"

});

See checkWord and Highlight, Strikeout, Underline and Squiggle for more interesting examples.

Security �: This method will throw an exception if the document security is set to
prevent content extraction.

getPageNumWords

Parameters: [nPage]
Returns: number

Returns the number of words on the page.

nPage is the zero-based index of the page to operate on. If nPage is not specified then nPage is
the first page in the document.

Example:
// count the number of words in a document

var cnt=0;

for (var p = 0; p < this.numPages; p++)

 cnt += getPageNumWords(p);

console.println("There are " + cnt + " words on this page.");

See also the getNthTemplate, getPageNthWord, and selectPageNthWord methods.

getPageRotation

Parameters: [nPage]
Returns: integer

Gets the rotation of the specified page.

nPage is the zero-based index of the page to operate on. If nPage is not specified then nPage is
the first page in the document.

Returns 0, 90, 180, or 270.

5.0

5.0

Acrobat JavaScript Object Specification 123

See also the setPageRotations method.

getPageTransition

Parameters: [nPage]
Returns: array

Gets the transition of the specified page.

nPage is the zero-based index of the page to operate on. If nPage is not specified then nPage is
the first page in the document.

The routine returns an array of three values: [nDuration, cTransition, nTransDuration].

nDuration is the maximum amount of time the page is displayed before the viewer
automatically turns to the next page. A duration of -1 indicates that there is no automatic page
turning.

cTransition is the name of the transition to apply to the page. See the application property
transitions for a list of valid transitions.

cTransDuration is the duration (in seconds) of the transition effect.

See also the setPageTransitions method.

getSound

Parameters: cName
Returns: Sound object

This method returns the sound object corresponding to the specified name.

Example:
var s = this.getSound("Moo");

console.println("Playing the " + s.name + " sound.");

s.play();

See also the sounds property, the importSound and deleteSound methods, and the Sound Object.

5.0

5.0

Acrobat JavaScript Object Specification 124

getTemplate

Parameters: cName
Returns: template object | null

Use this function to retrieve the named template from the document. Returns null if the named
template does not exist in the document.

cName is the name of the template to retrieve.

See also the templates property, the createTemplate, and removeTemplate methods of the Doc
Object, and the Template Object.

getURL

Parameters: cURL, [bAppend]
Returns: Nothing

This method retrieves the specified URL over the internet using a GET.

cURL can either be fully qualified or a relative URL. It is permissible to have a query string at
the end of the URL.

If the current document is being viewed inside the browser, or Acrobat Web Capture is not
available, it uses the Weblink plug-in to retrieve the requested URL.

If running inside Acrobat, then the URL of the current document is obtained either from the
document’s Base URL, or from the URL of page #0 (if the document was WebCaptured), or
from the file system.

The bAppend optional parameter indicates, if true (the default), that the resulting page(s) should
be appended to the current document. This flag is considered to be false if the document is run-
ning inside the web browser, the Acrobat Web Capture plug-in is not available, or if the URL is
of type "file:///".

gotoNamedDest

Parameters: cName
Returns: Nothing

Use this method to go to a named destination within the PDF document. For more details on
named destinations and how to create them, see page 387 of the PDF Reference.

5.0

4.0 �

http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://www.adobe.com/supportservice/devrelations/PDFS/TN/PDFSPEC.PDF
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://www.adobe.com/supportservice/devrelations/PDFS/TN/PDFSPEC.PDF

Acrobat JavaScript Object Specification 125

Example: The following example opens a document then goes to a named destination within
that document.

// open new document

var myNovelDoc = app.openDoc("/c/fiction/myNovel.pdf");

// go to destination in this new doc

myNovelDoc.gotoNamedDest("chapter5");

// close old document

this.closeDoc();

importAnFDF

Parameters: [cPath]
Returns: Nothing

This method imports the specified FDF file. The cPath parameter specifies the device-
independent pathname to the FDF file. See Section 3.10.1 of the PDF Reference for a
description of the device-independent pathname format. It should look like the value of the /F
key in an FDF exported via the submitForm method or via the "File->Export->Form Data" menu
item. The pathname may be relative to the location of the current document. If this parameter
is omitted a dialog will be shown to let the user select the file.

Example: The following code, which is an action of a Page Open event, checks whether a
certain function, ProcResponse, is already defined, if not, it installs a document level
JavaScript, which resides in an FDF file.

if (typeof ProcResponse == "undefined")

this.importAnFDF("myDLJS.fdf");

Here, the pathname is a relative one. This technique may be useful for automatically installing
document level JavaScripts for PDF files distilled from a PostScript file.

See also importAnXFDF and importTextData.

importAnXFDF

Parameters: [cPath]
Returns: Nothing

This method imports the specified XFDF file containing XML form data. The cPath parameter
specifies the device-independent pathname to the XFDF file. See Section 3.10.1 of the PDF
Reference for a description of the device-independent pathname format. The pathname may be

4.0 � �

5.0 � �

Acrobat JavaScript Object Specification 126

relative to the location of the current document. If the parameter is omitted, a dialog will be
shown to let the user select the file.

See also importAnFDF and importTextData. For a description of XFDF, please read the Forms
System Implementation Notes in the Adobe CD Documentation.

importDataObject

Parameters: cName, [cDIPath]
Returns: nothing

This method imports an external file into the document and associates the specified name with
the "data object", Data objects can later be extracted or manipulated.

cName is the name to associate with the data object.

cDIPath is optional and specifies a device independent path to a data file on the user’s hard
drive. This path may be absolute or relative to the current document. If cDIPath is not
specified then the user will be prompted to locate a data file. See File Specification Strings in
the PDF Reference Manual for the exact syntax of the path.

Example:
function DumpDataObjectInfo(dataobj)

{

for (var i in dataobj)

console.println(dataobj.name + "[" + i + "]=" + dataobj[i]);

}

// Prompt the user for a data file to embed.

this.importDataObject("MyData");

DumpDataObjectInfo(this.getDataObject("MyData"));

// Embed Foo.xml (found in parent director for this doc).

this.importDataObject("MyData2", "../Foo.xml");

DumpDataObjectInfo(this.getDataObject("MyData2"));

See also the Document dataObjects property, the Document createDataObject, exportDataObject,
getDataObject, importDataObject, and removeDataObject methods and the Data Object.

Security �: If the cDIPath parameter is specified, then this method can only be
executed during batch, console or menu events, or through an external call
(e.g. OLE). See the Event Object for a discussion of Acrobat JavaScript
events.

5.0 � � �

Acrobat JavaScript Object Specification 127

importIcon

Parameters: cName, [cDIPath], [nPage]
Returns: Integer

This method imports an icon into the document and associates it with the specified name.

cDIPath is optional and specifies a device independent path to a PDF file on the user’s hard
drive. This path may be absolute or relative to the current document. cDIPath may only be
specified in a batch environment or from the console. See Section 3.10.1, “File Specification
Strings” in the PDF Reference for the exact syntax of the path.

If cDIPath is not specified then the nPage parameter is ignored and the user will be prompted
to locate a PDF file and browse to a particular page.

nPage is the zero-based index of the page in the PDF file to import as an icon. Default is 0.

This method returns a code indicating whether it was successful or not.

This function is useful to populate a document with a series of named icons for later retrieval.
For example, if a user of a document selects a particular state in a listbox, the author may want
the picture of the state to appear next to the listbox. In prior versions of the application, this
could be done using a number of fields that could be hidden and shown. This is difficult to
author, however; instead, the appropriate script might be something like this:

var f = this.getField("StateListBox");

var b = this.getField("StateButton");

b.buttonSetIcon(this.getIcon(f.value));

This uses a single field to perform the same effect.

A simple user interface can be constructed to add named icons to a document. Assume the
existence of two fields: a field called IconName which will contain the icon name and a field
called IconAdd which will add the icon to the document. The mouse up script for IconAdd
would be:

var t = this.getField("IconName");

5.0 � �

Return Codes

Code Description

0 No error

1 The user cancelled the dialog

-1 The selected file couldn’t be opened

-2 The selected page was invalid

Acrobat JavaScript Object Specification 128

this.importIcon(t.value);

The same kind of script can be applied in a batch setting to populate a document with every
selected icon file in a folder.

See also the icons property and the addIcon, getIcon and removeIcon methods of the Doc Object,
the buttonGetIcon, buttonImportIcon, and buttonSetIcon methods of the Field Object, and the Icon
Object.

Security �: If cDIPath is specified, this method can only be executed during batch,
console or menu events. See the Event Object for a discussion of Acrobat
JavaScript events.

importSound

Parameters: cName, [cDIPath]
Returns: Nothing

This method imports a sound into the document and associates the specified name with the
sound.

cName is the name to associate with the sound object.

cPath is optional and specifies a device independent path to a sound file on the user’s hard
drive. This path may be absolute or relative to the current document. If cPath is not specified
then the user will be prompted to locate a sound file. See Section 3.10.1, “File Specification
Strings”, in the PDF Reference for the exact syntax of the path.

Example:
this.importSound("Moo");

this.getSound("Moo").play();

this.importSound("Moof", "./moof.wav");

this.getSound("Moof").play();

See also the sounds property, the getSound, and deleteSound methods, and the Sound Object.

Security �: If cDIPath is specified, this method can only be executed during batch,
console, or menu events. See the Event Object for a discussion of Acrobat
JavaScript events.

5.0 � �

Acrobat JavaScript Object Specification 129

importTextData

Parameters: [cPath], [nRow]
Returns: Nothing

This method imports a row of data from a text file. Each row must be tab delimited. The entries
in the first row of the text file are the column names of the tab delimited data. These names are
also field names for text fields present in the PDF file. The data row numbers are 0-based; i.e.,
the first row of data is row zero (this does not include the column name row). When a row of
data is imported, each column datum becomes the field value of the field that corresponds to
the column to which the data belongs.

cPath is a relative device independent path to the text file. If not specified, the user is
prompted to locate the text data file.

nRow is the zero-based index of the row of the data to import not counting the header row. If
not specified, the user is prompted to select the row to import.

Example: Suppose there are text fields named "First", "Middle" and "Last", and there is also a
data file, the first row of which consists of the three strings, First, Middle and Last, separated
by tabs. Suppose there are four additional rows of name data, again separated by tabs.

First Middle Last

Al Recount Gore

George Dubya Bush

Alan Cutrate Greenspan

Bill Outgoing Clinton

// Import the first row of data from "myData.txt".

this.importTextData("/c/data/myData.txt", 0)

/* The following code is a mouse up action for a button. Clicking on the

** button cycles through the text file and populates the three fields

** "First", "Middle" and "Last" with the name data. */

if (typeof cnt == "undefined") cnt = 0;

this.importTextData("/c/data/textdata.txt", cnt++ % 4)

The same functionality can be obtained using the ADBC Object and associated properties and
methods. The data file can be a spreadsheet or a database.

insertPages

Parameters: [nPage], cPath, [nStart], [nEnd]

5.0 � �

5.0 � � �

Acrobat JavaScript Object Specification 130

Returns: Nothing

Inserts pages from the source document into the current document.

nPage is the zero-based index of the page to insert the source document pages after. To insert
pages before the first page of the document nPage can be set to -1.

cPath specifies the device-independent pathname to the PDF file that will provide the inserted
pages. See Section 3.10.1 of the PDF Reference for a description of the device-independent
pathname format. The pathname may be relative to the location of the current document.

nStart and nEnd are zero-based indexes that define an inclusive range of pages in the source
document to insert. If nStart and nEnd are not specified, then the range of pages is for all
pages in the document. If only nStart is specified then the range of pages is the single page
specified by nStart. If only nEnd is specified then the range of pages is 0 to nEnd.

See also the deletePages and replacePages methods.

Security �: This method can only be executed during batch, console, or menu events.
See the Event Object for a discussion of Acrobat JavaScript events.

mailDoc

Parameters: [bUI], [cTo], [cCc], [cBcc], [cSubject], [cMsg]
Returns: Nothing

This method saves the current PDF document and mails it as an attachment to all recipients
with or without user interaction depending on the value of bUI. If it is set to true (the default)
then the rest of the parameters are used to seed the compose new message window that is
displayed to the user.

If bUI is set to false, the cTo parameter is required and all others are optional. You must use a
semicolon ";" to separate multiple recipients in cTo, cCc, cBcc parameters. The length limit for
cSubject and cMsg is 64k bytes.

Example:
/* This will pop up the compose new message window */

this.mailDoc(true);

/* This will send out the mail with the attached PDF file to fun1@fun.com and

fun2@fun.com */

this.mailDoc(false, "fun1@fun.com", "fun2@fun.com", "", "This is the subject",

"This is the body.");

4.0 �

Acrobat JavaScript Object Specification 131

Note: On Windows, the client machine must have its default mail program
configured to be MAPI enabled in order to use this method.

mailForm

Parameters: bUI, cTo, [cCc], [cBcc], [cSubject], [cMsg]
Returns: Nothing

This method exports the form data and mails the resulting FDF file as an attachment to all
recipients, with or without user interaction depending on the value of bUI. If it is set to true
then the rest of the parameters are used to seed the compose new message window that is
displayed to the user.

If bUI is set to false, the cTo parameter is required and all others are optional. You must use a
semicolon ";" to separate multiple recipients in cTo, cCc, cBcc parameters. The length limit for
cSubject and cMsg is 64k bytes.

Example:
/* This will pop up the compose new message window */

this.mailForm(true);

/* This will send out the mail with the attached FDF file to fun1@fun.com and

fun2@fun.com */

this.mailForm(false, "fun1@fun.com; fun2@fun.com", "", "", "This is the

subject", "This is the body of the mail.");

Note: On Windows, the client machine must have its default mail program
configured to be MAPI enabled in order to use this method.

movePage

Parameters: [nPage], [nAfter]
Returns: Nothing

Moves a page within the document.

nPage is the zero-based index of the page to move. Default is 0.

4.0 �

5.0 � �

Acrobat JavaScript Object Specification 132

nAfter is the zero-based index of the page to move the page after. To move the page before the
first page of the document nAfter can be set to -1. Default is the last page in the document.

Example: reverse the pages in the document.

for (i = this.numPages - 1; i >= 0; i--)

 this.movePage(i);

print

Parameters: [bUI], [nStart], [nEnd], [bSilent], [bShrinkToFit], [bPrintAsImage],
[bReverse], [bAnnotations]

Returns: Nothing

Use this function to print all or a specific number of pages of the document.

bUI, if true (the default), will cause a UI to be pre-populated with any parameters supplied and
presented to the user to obtain the missing information and confirm the action.

nStart and nEnd are zero-based indexes that define an inclusive range of pages. If nStart and
nEnd are not specified then the range of pages is for all pages in the document. If only nStart
is specified then the range of pages is the single page specified by nStart. If only nEnd is
specified then the range of a pages is 0 to nEnd.

If nStart and nEnd parameters are used, bUI must be false.

bSilent, if true, suppresses the cancel dialog box while the document is printing. Default is
false.

bShrinkToFit, if true, the page is shrunk (if necessary) to fit within the imageable area of the
printed page. If false, it is not. The default is false.

bPrintAsImage, if true, print pages as an image. The default is false.

bReverse, if true, print from nEnd to nStart. The default is false.

bAnnotations, if true (the default), annotations are printed.

Example:
// This Example will print current page the document is on

this.print(false, this.pageNum, this.pageNum);

// print a file silently

this.print({bUI: false, bSilent: true, bShrinkToFit: true});

5.0 Additions

Acrobat JavaScript Object Specification 133

removeDataObject

Parameters: cName
Returns: nothing

This method deletes the data object corresponding to the specified name from the document.

cName is the name of the data object to remove.

Example:
this.removeDataObject("MyData");

See also the Document dataObjects property, the Document createDataObject, exportDataObject,
getDataObject, importDataObject, and removeDataObject methods and the Data Object.

removeField

Parameters: cName
Returns: Nothing

Removes the field specified by cName from the document. If the field appears on more than
one page then all representations are removed.

removeIcon

Parameters: cName
Returns: Nothing

This function removes the specified named icon from the document.

See also the icons property and the addIcon, getIcon and importIcon methods of the Doc Object,
the buttonGetIcon, buttonImportIcon, and buttonSetIcon methods of the Field Object, and the Icon
Object.

removeTemplate

Parameters: cName
Returns: Nothing

5.0 � �

5.0 � �

5.0 �

5.0 � � �

Acrobat JavaScript Object Specification 134

Use this function to remove the named template from the document.

cName is the name of the template to remove.

See also the templates property, the createDataObject and getSound methods of the Data Object,
and the Template Object.

Security �: This method can only be executed during batch or console events. See
the Event Object for a discussion of Acrobat JavaScript events.

removeThumbnails

Parameters: [nStart], [nEnd]
Returns: Nothing

Deletes thumbnails for the specified pages in the document.

nStart and nEnd are zero-based indexes that define an inclusive range of pages. If nStart and
nEnd are not specified then the range of pages is for all pages in the document. If only nStart
is specified then the range of pages is the single page specified by nStart. If only nEnd is
specified then the range of a pages is 0 to nEnd.

See also the addThumbnails method.

removeWeblinks

Parameters: [nStart], [nEnd]
Returns: integer

Scans the specified pages looking for links with actions to go to a particular URL on the web
and deletes them.

nStart and nEnd are zero-based indexes that define an inclusive range of pages. If nStart and
nEnd are not specified then the range of pages is for all pages in the document. If only nStart
is specified then the range of pages is the single page specified by nStart. If only nEnd is
specified then the range of a pages is 0 to nEnd.

Returns the number of web links removed from the document.

See also the addWeblinks method.

5.0 � �

5.0 � �

Acrobat JavaScript Object Specification 135

Note: This method will only remove weblinks authored in the application using the
UI. Web links that are executed via JavaScript (e.g. getURL) are not
removed.

replacePages

Parameters: [nPage], cPath, [nStart], [nEnd]
Returns: Nothing

Replaces pages in the current document with pages from the source document.

nPage is the zero-based index of the page to start replacement at. Default is 0.

cPath specifies the device-independent pathname to the PDF file that will provide the
replacement pages. See Section 3.10.1 of the PDF Reference for a description of the device-
independent pathname format. The pathname may be relative to the location of the current
document.

nStart and nEnd are zero-based indexes that define an inclusive range of pages in the source
document to be used for replacement. If nStart and nEnd are not specified then the range of
pages is for all pages in the document. If only nStart is specified then the range of pages is the
single page specified by nStart. If only nEnd is specified then the range of pages is 0 to nEnd.

See also the deletePages, extractPages and insertPages methods.

Security �: This method can only be executed during batch, console, or menu events.
See the Event Object for a discussion of Acrobat JavaScript events.

resetForm

Parameters: [aFields]
Returns: Nothing

Use this method to reset the field values within a document. If the aFields parameter is
present, then only the fields indicated are reset. If not present or null then all fields in the form
are reset. You can include non-terminal fields in the array. Use this as a simple shortcut for
having a whole subtree reset. For example, if you pass "name" as part of the fields array then
"name.first", "name.last", etc. will be reset.

5.0 � � �

�

Acrobat JavaScript Object Specification 136

var fields = new Array(2);

fields[0] = "P1.OrderForm.Description";

fields[1] = "P1.OrderForm.Qty";

this.resetForm(fields);

Note: Resetting a field causes it to take on its default value which in the case of
text fields is usually blank.

saveAs

Parameters: cPath
Returns: nothing

This method saves the file to the device independent path specified by the required parameter,
cPath. The file is not saved in linearized format.

Example: The following code could appear as a batch sequence. Assume there is a PDF file
already open containing form files that needs to be populated from a database and saved.
Below is an outline of the script:

var aDocs = app.activeDocs; // get all active docs

var myForm = aDocs[0]; // assume our file is the only one open in viewer

// code lines to read from a database and populate the form with data

// now save file to a folder; use customerID from database record as name

var row = statement.getRow();

.......

myForm.saveAs("/c/customer/invoices/" + row.customerID + ".pdf");

Example: You can use the newDoc and addField methods to dynamically layout a form, then
populate it from a database and save.

var myDoc = app.newDoc()

// layout some dynamic form fields

// connect to database, populate with data, perhaps from a database

..........

// save the doc and/or print it; print it silently this time to default printer

myDoc.saveAs("/c/customer/invoices/" + row.customerID + ".pdf");

myDoc.closeDoc(true); // close the doc, no notification

Security �: This method can only be executed during batch, console, or menu events.
See the Event Object for a discussion of Acrobat JavaScript events.

5.0 � �

Acrobat JavaScript Object Specification 137

scroll

Parameters: nX, nY
Returns: Nothing

Use this function to scroll the point on the current page specified by nX and nY into middle of
the current view. These coordinates must be defined in Rotated User Space. Please refer to the
PDF Reference, page 126, for more details on the user space coordinate system.

selectPageNthWord

Parameters: [nPage], [nWord], [bScroll]
Returns: Nothing

Changes the current page number to nPage and selects the specified word on the page.

nPage is the zero-based index of the page to operate on. If nPage is not specified then nPage is
the first page in the document.

nWord is the zero-based index of the word to obtain. If nWord is not specified then nWord is
the first word on the page.

bScroll indicates whether or not to scroll the selected word into the view if it isn’t already
viewable. Default is true.

See also the getNthTemplate, getPageNthWord and getPageNumWords methods.

setPageBoxes

Parameters: [cBox], [nStart], [nEnd], [rBox]
Returns: Nothing

Sets a rectangle that encompasses the named box for the specified pages.

nStart and nEnd are zero-based indexes that define an inclusive range of pages in the document
to be operated on. If nStart and nEnd are not specified then the range of pages is for all pages
in the document. If only nStart is specified then the range of pages is the single page specified
by nStart.

cBox can be one of "Art", "Bleed", "Crop", "Media", or "Trim". Note that "BBox" is read-only
and only supported in getPageBox. For definitions of these boxes please see Section 8.6.1,
“Page Boundaries”, page 524, in the PDF Reference.

5.0

5.0 � �

http://www.adobe.com/supportservice/devrelations/PDFS/TN/PDFSPEC.PDF

Acrobat JavaScript Object Specification 138

rBox is an array of four numbers in Rotated User Space that the specified box will be set to. If
rBox is not provided then the specified box is removed.

See also the getPageBox method.

setPageLabels

Parameters: [nPage], [aLabel]
Returns: Nothing

This method establishes the numbering scheme for the specified page and all pages following it
until the next page with an attached label is encountered.

nPage is the zero-based index that defines the page to be labelled.

If aLabel is not supplied, any page numbering for the page and any others up to the next
specified label is removed.

When specified, aLabel is an array of three items [cStyle, cPrefix, nStart].

cStyle is the style of page numbering and one of "D" (decimal numbering), "R", "r" (roman
numbering upper/lower), "A", "a" (alphabetic numbering upper/lower). See the PDF Reference,
Section 7.3.1, for the exact definitions of these styles.

cPrefix is a string to prefix to the numeric portion of the page label.

nStart is the ordinal to start numbering the pages at.

Example: 10 pages in the document, label the first 3 with small roman numerals, the next 5
with numbers (starting at 1) and the last 2 with an "Appendix- prefix" and alphabetics.

this.setPageLabels(0, ["r", "", 1]);

this.setPageLabels(3, ["D", "", 1]);

this.setPageLabels(8, ["A", "Appendix-", 1]);

var s = this.getPageLabel(0);

for (var i = 1; i < this.numPages; i++)

s += ", " + this.getPageLabel(i);

console.println(s);

Would produce the following output on the console:

i, ii, iii, 1, 2, 3, 4, 5, Appendix-A, Appendix-B

Example: remove all page labels from a document.

for (var i = 0; i < this.numPages; i++) {

 if (i + 1 != this.getPageLabel(i)) {

5.0 � �

Acrobat JavaScript Object Specification 139

// Page label does not match ordinal page number.

 this.setPageLabels(i);

 }

}

See also the getPageLabel method.

setPageRotations

Parameters: [nStart], [nEnd], [nRotate]
Returns: Nothing

Rotates the specified pages in the current document.

nStart and nEnd are zero-based indexes that define an inclusive range of pages in the document
to be operated on. If nStart and nEnd are not specified then the range of pages is for all pages
in the document. If only nStart is specified then the range of pages is the single page specified
by nStart. If only nEnd is specified then the range of pages is 0 to nEnd.

nRotate specifies the amount of rotation that should be applied to the target pages. It should be
either 0, 90, 180, or 270. If nRotate is not specified then nRotate is zero.

See also the getPageRotation method.

setPageTransitions

Parameters: [nStart], [nEnd], [aTrans]
Returns: Nothing

nStart and nEnd are zero-based indexes that define an inclusive range of pages in the document
to be operated on. If nStart and nEnd are not specified then the range of pages is for all pages
in the document. If only nStart is specified then the range of pages is the single page specified
by nStart.

If aTrans is not present any page transitions for the pages are removed.

The page transition array consists of three values: [nDuration, cTransition, nTransDuration].

nDuration is the maximum amount of time the page is displayed before the viewer
automatically turns to the next page. Setting nDuration to -1 indicates that automatic page
turning should be turned off.

5.0 � �

5.0 � �

Acrobat JavaScript Object Specification 140

cTransition is the name of the transition to apply to the page. See transitions for a list of valid
transitions.

nTransDuration is the duration (in seconds) of the transition effect.

See also the getPageTransition method.

spawnPageFromTemplate

Parameters: cTemplate, [nPage], [bRename], [bOverlay]
Returns: Nothing

Use this method with a template name, cTemplate, such as the ones returned by getNthTemplate.
The optional parameter nPage, represents the page number (zero-based) into which the
template will be spawned. If that page already exists, then the template contents are appended
to that page (but see parameter bOverlay). If nPage is omitted, a new page is created at the end
of the document. The optional parameter bRename, is a boolean that indicates whether fields
should be renamed. The default for bRename is true.

If bOverlay is false then the template is inserted before the page specified by nPage as opposed
to being overlaid on top of that page. The default for bOverlay is true.

Example:
var n = this.numTemplates;

var cTempl;

for (i = 0; i < n; i++) {

cTempl = this.getNthTemplate(i);

this.spawnPageFromTemplate(cTempl);

}

See also the Doc Object’s templates property and the createTemplate method and the Template
Object’s spawn method which supersedes this method in later versions.

Note: The template feature does not work in Acrobat Reader.

� � �

4.0 Addition

Acrobat JavaScript Object Specification 141

submitForm

Parameters: cURL, [bFDF], [bEmpty], [aFields], [bGet], [bAnnotations], [bXML],
[bIncrChanges], [bPDF], [bCanonical], [bExclNonUserAnnots], [bExclFKey],
[cPassword]
Returns: Nothing

Use this method to submit the form to a specific URL. The first parameter, cURL, is the URL
to submit to. This string must end in "#FDF" if the result from the submission is FDF and the
document is being viewed inside a browser window.

The optional bFDF parameter is a boolean that indicates to submit as FDF or HTML. If set to
true, the default, it submits the form data as FDF. If false, it submits it as HTML (URL
encoded).

The optional bEmpty parameter is a boolean that indicates, when true, that all fields are
submitted, including those that have no value and if false to exclude those that currently have
no value. The default for bEmpty is false.

The optional aFields parameter is the array of field names to submit or a string containing a
single field name. If this parameter is present then only the fields indicated are submitted,
except those excluded by parameter bEmpty. If this parameter is omitted or is null then all
fields in the Form are submitted (again subject to the restrictions of bEmpty).

The optional bGet parameter is a boolean that indicates, if true, that the submission uses the
GET HTTP method and if false (the default) a POST. GET is only allowed if using Acrobat
Web Capture to submit (the browser interface only supports POST) and only if the data is sent
as HTML (i.e. parameters bFDF, bXML and bPDF should all be false).

The optional bAnnotations parameter is a boolean that indicates, if true, that the annotations
should be included in the submitted FDF or XML. The default is false. Only applicable if
bFDF or bXML are true.

The optional bXML parameter is a boolean that indicates, if true, to submit as XML. The
default is false.

The optional bIncrChanges parameter is a boolean that indicates, if true, to include in the
submitted FDF the incremental changes to the PDF. The default is false. Only applicable if
bFDF is true. Not available in the Acrobat Reader.

4.0 Addition

5.0 Additions

Acrobat JavaScript Object Specification 142

The optional bPDF parameter is a parameter that indicates, if true, to submit the complete PDF
document itself. The default is false. If bPDF is true, then the only other parameter that is
relevant is cURL. Not available in the Acrobat Reader.

The optional bCanonical parameter is a boolean that indicates, if true, to convert any dates
being submitted to standard format (i.e. D:YYYYMMDDHHmmSSOHH’mm’ see the PDF
Reference for more details). The default is false.

The optional bExclNonUserAnnots parameter is a boolean that indicates, if true, to exclude any
annotations that are not owned by the current user. The default is false.

The optional bExclFKey parameter is a boolean that indicates, if true, to exclude the "F" key.
The default is false.

If the FDF needs to be encrypted before getting submitted, then a password, cPassword, needs
to be provided that will be used to generate the encryption key. Alternatively, a boolean can be
passed instead: if cPassword is true (no quotes), then a dialog will be presented to the user
requesting the password. This dialog will be skipped, however, if the user has previously
(within this Acrobat session) entered a password as he submitted or received an encrypted FDF
(in which case that password will be used instead). Regardless of whether an actual password
is passed in, or one is requested from the user via dialog, this new password is remembered
(within this Acrobat session) for future outgoing or incoming encrypted FDFs. This parameter
is only valid if bFDF is true.

You can include non-terminal fields in the array or the string passed as a parameter: this is a
simple shortcut for having a whole subtree submitted.

Example:
/* Submit the form to the server */

this.submitForm("http://myserver/cgi-bin/myscript.cgi#FDF");

/* Or */

this.submitForm("http://myserver/cgi-bin/myscript.cgi#FDF",

true, false, "name");

The example above illustrates a shortcut to submitting a whole subtree. Passing "name" as part
of the field parameter, submits "name.title", "name.first", "name.middle" and "name.last".

Example:
this.submitForm({

cURL: "http://myserver/cgi-bin/myscript.cgi#FDF",

bXML: true

});

Note: You need to be running inside a web browser or have the Acrobat Web
Capture plug-in installed, in order to call the submitForm method (unless
the URL uses the "mailto" scheme, in which case it will be honored even if
not running inside a web browser, as long as the SendMail plug-in is
present).

Acrobat JavaScript Object Specification 143

Usage of the https protocol is supported for secure connections.

syncAnnotScan

Parameters: None
Returns: Nothing

In order to show or process annotations for the entire document all annotations must have been
detected. Normally, a background task runs that examines every page and looks for annotations
during idle time as this scan is a time consuming task. Calling this method simply guarantees
that all annots will be scanned by the time this method returns.

Example:
this.syncAnnotScan();

annots = this.getAnnots({nSortBy:ANSB_Author});

// now, do something with the annotations.

The second line of code will not be executed until syncAnnotScan returns and this will not
occur until the annot scan of the document is completed.

Note: Much of the code in annots works gracefully even when the full list of annots
is not yet acquired by background scanning. In general, you should probably
do syncAnnotScan if want the entire list of annots.

See also getAnnots.

5.0

Acrobat JavaScript Object Specification 144

Event Object
All JavaScripts are executed as the result of a particular event. Each event has a type and a
name.The events detailed here are listed as type/name name pairs.

For each of these events, Acrobat JavaScript creates an event object. During the occurrence of
each event, this event object can be accessed, information about the current state of the event
can be obtained and possibly manipulated.

It is important for JavaScript writers to know when these events occur and in what order they
are processed. Some methods or properties can only be accessed during certain events;
therefore, a knowledge of these events will prove useful.

Event Type/Name Combinations

App/Init

When the Viewer is started, the Application Initialization Event occurs. Script files, called
Folder Level JavaScripts, are read in from the application and user JavaScript folders. They load
in the following order: Config.js, glob.js, all other files, then any user files.

This event defines the name and type properties for the event object.

This event does not listen to the rc return code.

Batch/Exec

A batch event occurs during the processing of each document of a batch sequence. JavaScripts
that authored as part of a batch sequence can access the event object upon execution.

This event defines the name, target, and type properties for the event object. The target in this
event is the document object.

This event listens to the rc return code. If the return code is set to false, the batch sequence is
stopped.

Bookmark/Mouse Up

This event occurs whenever a user clicks on a bookmark that executes a JavaScript.

5.0

5.0

Acrobat JavaScript Object Specification 145

This event defines the name, target, and type properties for the event object. The target in this
event is the bookmark object that was clicked.

This event does not listen to the rc return code.

Console/Exec

A console event occurs whenever a user evaluates a JavaScript in the console.

This event defines the name, and type properties for the event object.

This event does not listen to the rc return code.

Doc/DidPrint

This event is triggered after a document has printed.

This event defines the name, target, and type properties for the event object. The target in this
event is the document object.

This event does not listen to the rc return code.

Doc/DidSave

This event is triggered after a document has been saved.

This event defines the name, target, and type properties for the event object. The target in this
event is the document object.

This event does not listen to the rc return code.

Doc/Open

This event is triggered whenever a document is opened. When a document is opened document
level script functions are scanned and any exposed scripts are executed.

This event defines the name, target, targetName, and type properties for the event object. The
target in this event is the document object.

5.0

5.0

5.0

Acrobat JavaScript Object Specification 146

This event does not listen to the rc return code.

Doc/WillClose

This event is triggered before a document is closed.

This event defines the name, target, and type properties for the event object. The target in this
event is the document object.

This event does not listen to the rc return code.

Doc/WillPrint

This event is triggered before a document is printed.

This event defines the name, target, and type properties for the event object. The target in this
event is the document object.

This event does not listen to the rc return code.

Doc/WillSave

This event is triggered before a document is saved.

This event defines the name, target, and type properties for the event object. The target in this
event is the document object.

This event does not listen to the rc return code.

External/Exec

This event is the result of an external access, e.g. through OLE, AppleScript, or loading an
FDF.

This event defines the name and type properties for the event object.

This event does not listen to the rc return code.

5.0

5.0

5.0

5.0

Acrobat JavaScript Object Specification 147

Field/Blur

The blur event occurs after all other events just as the field loses focus. This event is generated
regardless of whether or not a mouse click is used to deactivate the field (e.g. tab key).

This event defines the modifier, name, shift, target, targetName, type, and value properties for the
event object. The target in this event is the field whose validation script is being executed.

This event does not listen to the rc return code.

Field/Calculate

This event is defined when a change in a form requires that all fields that have a calculation
script attached to them be executed. All fields that depend on the value of the changed field
will now be re-calculated. These fields may in turn generate additional Field/Validate, Field/
Blur, and Field/Focus events.

Calculated fields may have dependencies on other calculated fields whose values must be
determined beforehand. The calculation order array contains an ordered list of all the fields in
a document that have a calculation script attached. When a full calculation is needed, each of
the fields in the array is calculated in turn starting with the zeroth index of the array and
continuing in sequence to the end of the array.

To change the calculation order of fields, use the Tools->Forms->Set Field Calculation
Order... menu item in Adobe Acrobat.

This event defines the name, source, target, targetName, type, and value properties for the event
object. The target in this event is the field whose calculation script is being executed.

This event does listen to the rc return code. If the return code is set to false, the field’s value is
not changed. If true, the field takes on the value found in the value property.

Field/Focus

The focus event occurs after the mouse down but before the mouse up after the field gains the
focus. This routine is called whether or not a mouse click is used to activate the field (e.g. tab
key) and is the best place to perform processing that must be done before the user can interact
with the field.

This event defines the modifier, name, shift, target, targetName, type, and value properties for the
event object. The target in this event is the field whose validation script is being executed.

This event does not listen to the rc return code.

4.05

4.05

Acrobat JavaScript Object Specification 148

Field/Format

Once all dependent calculations have been performed the format event is triggered. This event
allows the attached JavaScript to change the way that the data value appears to a user (also
known as its presentation or appearance). For example, if a data value is a number and the
context in which it should be displayed is currency, the formatting script can add a dollar sign
($) to the front of the value and limit it to two decimal places past the decimal point.

This event defines the commitKey, name, target, targetName, type, value, and willCommit
properties for the event object. The target in this event is the field whose format script is being
executed.

This event does not listen to the rc return code. However, the resulting value property is used as
the fields formatted appearance.

Field/Keystroke

The keystroke event occurs whenever a user types a keystroke into a text box or combobox (this
includes cut and paste operations), or selects an item in a combobox drop down or listbox field.
A keystroke script may want to limit the type of keys allowed. For example, a numeric field
might only allow numeric characters.

The user interface for Acrobat allows the author to specify a Selection Change script for
listboxes. The script is triggered every time an item is selected. This is implemented as the
keystroke event where the keystroke value is equivalent to the user selection. This behavior is
also implemented for the combobox—the "keystroke" could be thought to be a paste into the
text field of the value selected from the drop down list.

There is a final call to the keystroke script before the validate event is triggered. This call sets
the willCommit property to true for the event. With keystroke processing, it is sometimes useful
to make a final check on the field value before it is committed (pre-commit). This allows the
script writer to gracefully handle particularly complex formats that can only be partially
checked on a keystroke by keystroke basis.

This event defines the commitKey, change, changeEx, keyDown, modifier, name, selEnd, selStart,
shift, target, targetName, type, value, and willCommit properties for the event object. The target in
this event is the field whose keystroke script is being executed.

This event does listen to the rc return code. If set to false, the keystroke is ignored. The
resulting change property is used as the keystroke if the script desires to replace the keystroke
code. The resultant selEnd and selStart properties can change the current text selection in the
field.

Acrobat JavaScript Object Specification 149

Field/Mouse Down

The mouse down event is triggered when a user starts to click on a form field and the mouse
button is still down. It is advised that you perform very little processing (i.e. play a short
sound) during this event. A mouse down event will not occur unless a mouse enter event has
already occurred.

This event defines the modifier, name, shift, target, targetName, and type properties for the event
object. The target in this event is the field whose validation script is being executed.

This event does not listen to the rc return code.

Field/Mouse Enter

The mouse enter event is triggered when a user moves the mouse pointer inside the rectangle
of a field. This is the typical place to open a text field to display help text, etc.

This event defines the modifier, name, shift, target, targetName, and type properties for the event
object. The target in this event is the field whose validation script is being executed.

This event does not listen to the rc return code.

Field/Mouse Exit

The mouse exit event is the opposite of the mouse enter event and occurs when a user moves
the mouse pointer outside of the rectangle of a field. A mouse exit event will not occur unless a
mouse enter event has already occurred.

This event defines the modifier, name, shift, target, targetName, and type properties for the event
object. The target in this event is the field whose validation script is being executed.

This event does not listen to the rc return code.

Field/Mouse Up

The mouse up event is triggered when the user clicks on a form field and releases the mouse
button. This is the typical place to attach routines such as the submit action of a form. A mouse
up event will not occur unless a mouse down event has already occurred.

This event defines the modifier, name, shift, target, targetName, and type properties for the event
object. The target in this event is the field whose validation script is being executed.

This event does not listen to the rc return code.

Acrobat JavaScript Object Specification 150

Field/Validate

Regardless of the field type, user interaction with a field may produce a new value for that
field. After the user has either clicked outside a field, tabbed to another field, or pressed the
enter key, the user is said to have committed the new data value.

The validate event is the first event generated for a field after the value has been committed so
that a JavaScript can verify that the value entered was correct. If the validate event is
successful, the next event triggered is the calculate event.

This event defines the change, changeEx, keyDown, modifier, name, shift, target, targetName, type,
and value properties for the event object. The target in this event is the field whose validation
script is being executed.

This event does listen to the rc return code. If the return code is set to false, the field value is
considered to be invalid and the value of the field is unchanged.

Link/Mouse Up

This event is triggered when a link containing a JavaScript action is activated by the user.

This event defines the name, target, and type properties for the event object. The target in this
event is the document object.

This event does not listen to the rc return code.

Menu/Exec

A menu event occurs whenever JavaScript that has been attached to a menu item is executed.
In Acrobat 5.0, the user can add a menu item and associate JavaScript actions with it. For
example,

app.addMenuItem({ cName: "Hello", cParent: "File",

cExec: "app.alert('Hello',3);", nPos: 0});

The script "app.alert('Hello',3);" will execute during a menu event. There are two ways for
this to occur:

1. Through the user interface, the user can click on that menu item and the script will
execute; and

2. Programmatically, when app.execMenuItem("Hello") is executed (perhaps, during a mouse
up event of a button field), the script will execute.

5.0

5.0

Acrobat JavaScript Object Specification 151

This event defines the name, target, targetName, and type properties for the event object. The
target in this event is the currently active document, if one is open.

This event listens to the rc return code in the case of the enable and marked proc for menu
items. A return code of false will disable or unmark a menu item. A return code of true will
Event Processing

Page/Open

This event happens whenever a new page is viewed by the user and after page drawing for the
page has occurred.

This event defines the name, target, and type properties for the event object. The target in this
event is the document object.

This event does not listen to the rc return code.

Page/Close

This event happens whenever the page being viewed is no longer the current page. I.e. the user
has switched to a new page or closes the document.

This event defines the name, target, and type properties for the event object. The target in this
event is the document object.

This event does not listen to the rc return code.

Document Event Processing

When a document is opened, the Doc/Open event occurs: functions are scanned, and any
exposed scripts are executed. Next, if the NeedAppearances key in the PDF file is set to true
in the AcroForm dictionary, the formatting scripts of all form fields in the document are
executed. (See Section 3.6.1 and 7.6.1 of the PDF Reference for more information on the
NeedAppearances key and the AcroForm dictionary.) Finally, the Page/Open event occurs.

Note: For user’s who create PDF files containing form fields with the
NeedAppearances key set to true, be sure to do a “Save As” before posting
such files on the Web. Performing a “Save As” on a file will generate the
form appearances, which will be saved with the file. This increases the
performance of Reader when it loads the file within a Web browser.

4.05

4.05

Acrobat JavaScript Object Specification 152

Form Event Processing

The order in which the form events occur is illustrated in the state diagram below. This
illustrates certain dependencies that are worth noting, e.g. the Mouse Up event cannot occur if
the Focus event did not occur.

Event Object Properties

change

Type: String Access: R/W

This property specifies the change in value that the user has just typed. The change is
replaceable such that if the JavaScript wishes to substitute certain characters, it may. The
change may take the form of an individual keystroke or a string of characters (for example if a
paste into the field is performed).

changeEx

Type: Various Access: R

5.0

Mouse Enter

Mouse Exit

Mouse Down Mouse UpFocus Blur

Keystroke
or

Selection
Change*

Validate

Calculate

Format

*Selection change for list box only.

Acrobat JavaScript Object Specification 153

This property contains the export value of the change and is available only during a Field/
Keystroke event for listbox and combobox. (For the former case, the keystroke script, if any, is
entered under the Selection Change tab in the properties dialog.) The preceding description is
true for listbox, but there are some additional qualifications for the combobox.

For the combobox, the changeEx property is only available if the pop-up part of it is used, i.e. a
selection (with the mouse or the keyboard) is being made from the pop-up. If the combo is
editable and the user types in an entry, then the above is not applicable, and the Field/Keystroke
event behaves just like for a text field (i.e. there are no changeEx or keyDown event properties).

commitKey

Type: Number Access: R

Use this property to determine how a form field will lose focus. Valid values are:

0 - value was not committed (e.g. escape key was pressed).

1 - value was committed because of a click outside the field using the mouse.

2 - value was committed because of hitting the enter key.

3 - value was committed by tabbing to a new field.

For example, to automatically display an alert dialog after a field has been committed add the
following to the field’s format script:

if (event.commitKey != 0)

app.alert("Thank you for your new field value.");

keyDown

Type: Boolean Access: R

This property is available only during a keystroke event for listbox and combobox, and is true
if the arrow keys were used to make a selection, false otherwise. The preceding description is
true for listbox, but there are some additional qualifications for the combobox.

For the combobox, however, the keyDown property is only available if the pop-up part of it is
used, i.e. a selection (with the mouse or the keyboard) is being made from the pop-up. If the
combo is editable and the user types in an entry, then the above is not applicable, and the Field/
Keystroke event behaves just like for a text field (i.e. there are no changeEx or keyDown event
properties)

4.0

5.0

Acrobat JavaScript Object Specification 154

modifier

Type: Boolean Access: R

This property is a boolean that specifies whether the modifier key is down during a particular
event. The modifier key on the Microsoft Windows platform is Control and on the Macintosh
platform is Option or Command. The modifier property is not supported on UNIX.

name

Type: String Events: all Access: R

This property is the name of the current event as a text string. The type and name together
uniquely identify the event. Valid names are Keystroke, Validate, Focus, Blur, Format,
Calculate, Mouse Up, Mouse Down, Mouse Enter, Mouse Exit, Open, Close, Will Save, Did
Save, Will Print, Did Print, Init, and Exec.

rc

Type: Boolean Events: Keystroke, Validate, Menu Access: R/W

This property is used for validation. It indicates whether a particular event in the event chain
should succeed. Set rc to false to prevent a change from occurring or a value from committing.
By default rc is true.

selEnd

Type: Integer Access: R/W

This property specifies the ending position of the current text selection during a keystroke
event.

selStart

Type: Integer Access: R/W

This property specifies the starting position of the current text selection during a keystroke
event.

shift

Type: Boolean Access: R

4.05

Acrobat JavaScript Object Specification 155

This property is a boolean that specifies whether the shift key is down during a particular
event.

source

Type: Object Access: R

This property contains the field object that triggered the calculation event. This is usually
different from the target of event, that is, the field that is being calculated.

target

Type: Object Access: R

This property contains the target object that triggered the event. In all mouse, focus, blur,
calculate, validate, and format events it is the Field Object that triggered the event. In other
events like page open and close it is the document or this Object.

targetName

Type: String Access: R

This property will try return the name of the JavaScript being executed and can be used for
debugging purposes to help better identify the code causing exceptions to be thrown. Common
values of targetName include:

• the folder-level script file name for App:Init events;
• the Doc-level script name for Doc:Exec events;
• the PDF file name being processed for Batch:Exec events;
• the Field name for Field:Exec events.
• the Menu item name for Menu:Exec events.

If there is an identifiable name, Acrobat EScript will report targetName in the case an exception is
thrown.

Example: The first line of the folder level JavaScript file conserve.js has an error in it, when
the Acrobat Viewer started, an exception is thrown. The standard message reveals quite clearly
the source of the problem.

uncaught exception: conserve.js:App:Init:1: Missing required argument for

App.alert. ===> Parameter cMsg.

5.0

Acrobat JavaScript Object Specification 156

type

Type: string Access: R

This property is the type of the current event as a text string. The type and name together
uniquely identify the event. Valid types are Batch, Console, App, Doc, Page, External,
Bookmark, Link, Field, and Menu.

value

Type: Various Access: R/W

For the Field/Validate event, value is the value that the field contains when it is committed. The
current field value is the value property for the field. For comboboxes, this is the face value,
not the export value (see the changeEx property for the export value).

For example, the following JavaScript verifies that the field value is between zero and 100.

if (event.value < 0 || event.value > 100) {

app.beep(0);

app.alert("Invalid value for field " + event.target.name);

event.rc = false;

}

For a Field/Calculate event, JavaScript should set this property. This is the value that the field
should take upon completion of the event. For example, the following JavaScript sets the
calculated value of the field to the value of the SubTotal field plus tax.

var f = this.getField("SubTotal");

event.value = f.value * 1.0725;

For a Field/Format event, JavaScript should set this property. This is the value used when
generating the appearance for the field. By default, it contains the value that the user has
committed. For comboboxes, this is the face value, not the export value (see the changeEx
property for the export value).

For example, the following JavaScript formats the field as a currency type of field.

event.value = util.printf("$%.2f", event.value);

For the Field/Keystroke event, this is the current value of the field. If modifying a text field, for
example, this will be the text in the text field before the keystroke is applied.

For Field/Blur and Field/Focus events, this is the current value of the field.

5.0

Acrobat JavaScript Object Specification 157

When dealing with a listbox that allows multiple selections (see the Field Object’s
multipleSelection property), if the field value is an array (that is, there are multiple selections
currently selected), event.value will return an empty string when getting, and will not accept it
when setting. This is reasonable behavior, because event.value is primarily meant for Field/
Validate and Field/Format events, none of which are really useful for listboxes. However, Field/
Calculate, Field/Focus and Field/Blur also set field.value; and for these cases that value can be
used instead.

willCommit

Type: Boolean Access: R

Use this property to verify the current keystroke event before the data is committed. This is
useful to check the target form field values and for example verify if character data instead of
numeric data was entered. JavaScript sets this property to true after the last keystroke event
and before the field is validated.

Example:
var value = event.value

if (event.willCommit)

// Final value checking.

else

// Keystroke level checking.

5.0 Addition

Acrobat JavaScript Object Specification 158

Field Object
The Field object represents an Acrobat form field (that is, a field created using the Acrobat
form tool or the addField method of the Doc Object). In the same manner that an author might
want to modify an existing field’s properties like the border color or font, the Field object
gives the JavaScript user the ability to perform the same modifications.

In addition to the examples following the various properties and methods listed in this section,
the sections How can I create a form field programmatically? and Quick Reference: Forms have
extensive examples and discussion of how to create and control form fields through JavaScript.

Field Access from JavaScript

Before a field can be accessed, it must be “bound” to a JavaScript variable through a method
provided by the Doc Object method interface. More than one variable may be bound to a field
by modifying the field’s object properties or accessing its methods. This affects all variables
bound to that field.

var f = this.getField("Total");

This example allows the script to now manipulate the form field Total via the variable f.

Field Properties

alignment

Type: String Fields: text Access: R/W

This property determines how the text is laid out within the text field. Valid alignments include
"left", "center", and "right".

var f = this.getField("MyText");

f.alignment = "center";

borderStyle

Type: String Fields: all Access: R/W

This property specifies the border style for a field. Valid border styles include solid, dashed,
beveled, inset, and underline. The border style determines how the border for the rectangle is
drawn.

• The solid style strokes the entire perimeter of the rectangle with a solid line.

�

�

Acrobat JavaScript Object Specification 159

• The dashed style strokes the perimeter with a dashed line.
• The beveled style is equivalent to the solid style with an additional beveled (pushed-out

appearance) border applied inside the solid border.
• The inset style is equivalent to the solid style with an additional inset (pushed-in appearance)

border applied inside the solid border.
• The underline style strokes the bottom portion of the rectangle’s perimeter.

The border object is a static convenience constant that defines all the border styles of a field.
The following example illustrates how to set the border style of a field to solid:

var f = this.getField("MyField");

f.borderStyle = border.s; /* border.s evaluates to "solid" */

The following chart defines the borderStyle property and its associated keywords:

buttonAlignX

Type: Integer Fields: button Access: R/W

The buttonAlignX alignment property defines how space is distributed from the left of the
button face with respect to the icon. It is expressed as a percentage between 0 and 100
inclusive. The default value is 50. If the icon is scaled anamorphically (which results in no
space differences) then this property is not used.

buttonAlignY

Type: Integer Fields: button Access: R/W

The buttonAlignY alignment property defines how unused space is distributed from the bottom
of the button face with respect to the icon. It is expressed as a percentage between 0 and 100
inclusive. The default value is 50. If the icon is scaled anamorphically (which results in no
space differences) then this property is not used.

Type Keyword

solid border.s

beveled border.b

dashed border.d

inset border.i

underline border.u

5.0 �

5.0 �

Acrobat JavaScript Object Specification 160

buttonPosition

Type: Integer Fields: button Access: R/W

The buttonPosition property defines how the text and the icon of the button are positioned with
respect to each other within the button face. The convenience position object defines all of the
valid alternatives:

buttonScaleHow

Type: Integer Fields: button Access: R/W

The buttonScaleHow property defines how the icon is scaled (if necessary) to fit inside the
button face. The convenience scaleHow object defines all of the valid alternatives:

buttonScaleWhen

Type: Integer Fields: button Access: R/W

5.0 �

Icon/Text Placement Keyword

Text Only position.textOnly

Icon Only position.iconOnly

Icon top, Text bottom position.iconTextV

Text top, Icon bottom position.textIconV

Icon left, Text right position.iconTextH

Text left, Icon right position.textIconH

Text in Icon (overlaid) position.overlay

5.0 �

How is Icon Scaled Keyword

Proportionally scaleHow.proportional

Non-proportionally scaleHow.anamorphic

5.0 �

Acrobat JavaScript Object Specification 161

The buttonScaleWhen property defines when an icon is scaled to fit inside the button face. The
convenience scaleWhen object defines all of the valid alternatives:

calcOrderIndex

Type: Integer Fields: combobox, text Access: R/W

Use this property to change the calculation order of fields in the document. When a computable
Text or Combobox field is added to a document, the field’s name is appended to the calculation
order array. The calculation order array determines the order fields are calculated in the
document. The calcOrderIndex property works similarly to the Calculate tab used by the
Acrobat Form tool. Note the following example:

var a = this.getField("newItem");

var b = this.getField("oldItem");

a.calcOrderIndex = b.calcOrderIndex + 1;

In this example, the Doc Object method getField, gets the "newItem" field that was added after
"oldItem" field. It then changes the calcOrderIndex of the "oldItem" field so that it is
calculated before "newItem" field.

charLimit

Type: Integer Fields: text Access: R/W

This property limits the number of characters that a user can type into a text field.

currentValueIndices

Type: Integer | Array Fields: combobox, listbox Access: R/W

When is Icon Scaled Keyword

Always scaleWhen.always

Never scaleWhen.never

If icon is too big scaleWhen.tooBig

If icon is too small scaleWhen.tooSmall

�

�

5.0 �

Acrobat JavaScript Object Specification 162

Read: This property returns the indices, in the options array, of the strings that are the value of
a listbox or combobox field. These indices are zero-based. If the value of the field is a single
string then it returns an integer. Otherwise, it returns an array of integers sorted in ascending
order. If the current value of the field is not a member of the set of offered choices (as could
happen in the case of an editable combobox) then it returns -1.

Example: Given a listbox field that allows multiple section, the following code, which is
placed in the “Selection Change” script box, keeps a track of the current selection.

if (event.willCommit) {

var f = event.target;

var a = f.currentValueIndices;

if (typeof a == "number")

console.println("Selection: " + f.getItemAt(a, false));

else {

console.println("Selection:");

for (var i = 0; i < a.length; i ++)

console.println(" " + f.getItemAt(a[i], false));

}

}

Write: This property is used to set the value of a listbox or combobox. It accepts either a single
integer, or an array of integers, as an argument. If the listbox or combobox will have a single
string as its value, then pass an integer, which is the index (zero-based) of that string in the
options array. Note that in the case of an editable combobox, if the desired value is not a
member of the set of offered choices, then you must set the Field.value property instead.
Except for this case, currentValueIndices is the preferred way to set the value of a list/
combobox. If the listbox (and this possibility exists only for listboxes) allows multiple
selection, and the desired new value is, in fact, an array of strings, then pass as argument to
this property an array containing the indices (which must be sorted in ascending order) of those
strings in the options array. Setting the currentValueIndices property is the only way to invoke
multiple selection for a listbox from JavaScript.

Example: The following code, selects the second and fourth (zero-based index values, 1 and 3,
respectively) in a listbox.

var f = getField("myList");

f.currentValueIndices = [1,3];

The ability for a listbox to support multiple section can be set through the multipleSelection
property.

Acrobat JavaScript Object Specification 163

defaultValue

Type: String Fields: all but button and signature Access: R/W

This property exposes the default value of a field. This is the value that the field is set to when
the form is reset. For comboboxes and listboxes either an export or a user value can be used to
set the default. In the case of a conflict (e.g. the field has an export value and a user value with
the same string but these apply to different items in the list of choices), the export value is
matched against first.

Example:
var f = this.getField("Name");

f.defaultValue = "Enter your name here.";

doNotScroll

Type: Boolean Fields: text Access: R/W

When set true, the text field does not scroll and the user, therefore, is limited by the
rectangular region designed for the field. Setting this property to true or false corresponds to
checking or unchecking the “Do Not Scroll” field in the Options tab of the field.

doNotSpellCheck

Type: Boolean Fields: combobox (editable), text Access: R/W

When set to true, spell checking is not performed on this editable text field. Setting this
property to true or false corresponds to checking or unchecking the “Do Not Spell Check” field
in the Options tab of the field.

delay

Type: Boolean Fields: all Access: R/W

This property delays the redrawing of a field’s appearance. It is generally used to buffer a
series of changes to the properties of the field before requesting that the field regenerate its
appearance. Setting the property to true forces the field to wait until delay is set to false. The
update of its appearance then takes place, redrawing the field with its latest settings.

// Get the myCheckBox field

�

5.0 �

5.0 �

Acrobat JavaScript Object Specification 164

var f = this.getField("myCheckBox");

// set the delay and change the fields properties

// to beveled edge and medium thickness line.

f.delay = true;

f.borderStyle = border.b;

f.strokeWidth = 2;

// force the changes now

f.delay = false;

There is a corresponding document level delay flag if changes are being made to many fields at
once.

display

Type: Integer Fields: all Access: R/W

This property controls whether the field is hidden or visible on screen and in print:

This property supersedes the older hidden and print properties.

Example:
// Set the display property

var f = getField("myField");

f.display = display.noPrint;

// Test whether field is hidden on screen and in print

if (f.display == display.hidden)

console.println("hidden");

doc

Type: Object Fields: all Access: R

This property returns the Doc Object of the document to which the field belongs. Please refer to
the Doc Object section for more details.

4.0 �

Effect Keyword

Field is visible on screen and in print display.visible

Field is hidden on screen and in print display.hidden

Field is visible on screen but doesn’t print display.noPrint

Field is hidden on screen but prints display.noView

Acrobat JavaScript Object Specification 165

editable

Type: Boolean Fields: combobox Access: R/W

Comboboxes can be editable, that is, the user can type in a selection. This property determines
whether the user can type in a selection or must choose one of the provided selections.

var f = this.getField("myComboBox");

f.editable = true;

exportValues

Type: array Fields: checkbox, radiobutton Access: R/W

This property is the array of export values defined for the field. For radio button fields, this is
necessary to make the field work properly as a group with the one button checked at any given
time giving its value to the field as a whole. For checkbox fields, unless an export value is
specified, the default used when the field is checked is "Yes" (or the corresponding localized
string). When it is unchecked, its value is "Off" (this is also true for a radio button field when
none of its buttons are checked). This property is expected to be an array of strings and have as
many elements as there are annotations in the field. The elements of the array are distributed
among the individual annotations comprising the field in the order that they got created (and is
unaffected by tab-order).

Example:
var d = 40;

var f = this.addField("myRadio", "radiobutton", 0, [200, 510, 210, 500]);

this.addField("myRadio", "radiobutton", 0, [200+d, 510-d, 210+d, 500-d]);

this.addField("myRadio", "radiobutton", 0, [200, 510-2*d, 210, 500-2*d]);

this.addField("myRadio", "radiobutton", 0, [200-d, 510-d, 210-d, 500-d]);

f.strokeColor = color.black;

// now give each radio field an export value

f.exportValues = ["North", "East", "South", "West"];

fileSelect

Type: Boolean Fields: text Access: R/W

�

5.0 �

5.0 � �

Acrobat JavaScript Object Specification 166

The fileSelect property of the text field, when true, sets the “Field is Used for File Selection”,
or more simply, the file select flag, in the Options tab of the field. This indicates that the value
of the field represents a pathname of a file whose contents may be submitted with the form.

The pathname may be entered directly into the field by the user, or the user can browse for the
file. (See the browseForFileToSubmit method.)

Note: The file select flag is mutually exclusive with the multiline, charLimit,
password, and defaultValue properties. Also, on the Macintosh platform, when
setting the file select flag, the field gets treated as read-only; hence, the user
must browse for the file to enter into the field. (See the
browseForFileToSubmit method.)

Security �: This property can only be set during batch, menu, or console events. See
the Event Object for a discussion of Acrobat JavaScript events.

fillColor

Type: Array Fields: all Access: R/W

This property specifies the background color for a field. The background color is used to fill
the rectangle of the field. Values are defined by using transparent, gray, RGB or CMYK color.
Refer to the Color Arrays section for information on defining color arrays and how values are
used with this property.

var f = this.getField("myField");

if (color.equal(f.fillColor, color.red))

f.fillColor = color.blue;

else

f.fillColor = color.yellow;

In older versions of this specification, this property was named bgColor. The use of bgColor is
now discouraged but for backwards compatibility is still valid.

hidden

Type: Boolean Fields: all Access: R/W

�

� �

Acrobat JavaScript Object Specification 167

This property controls whether the field is hidden or visible to the user. If the value is false the
field is visible, true the field is invisible. The default value for hidden is false.

// Set the field to hidden

var f = this.getField("myField");

f.hidden = true;

See also the display property which supersedes this property in later versions.

highlight

Type: String Fields: button Access: R/W

This property defines how a button reacts when a user clicks it. The four highlight modes
supported are none, invert, push, and outline.

• The none highlight does not indicate visually that the button has been clicked.
• The invert highlight causes the region encompassing the button’s rectangle to invert momentarily.
• The push highlight displays the down face for the button (if any) momentarily.
• The outline highlight causes the border of the rectangle to invert momentarily.

The convenience highlight object defines all the characteristics that a button can have. The
following chart shows the highlight object and its associated keywords:

The following example sets the highlight property of a button to "invert".

// set the highlight mode on button to invert

var f = this.getField("myButton");

f.highlight = highlight.i;

lineWidth

Type: Integer Fields: all Access: R/W

�

Type Keyword

none highlight.n

invert highlight.i

push highlight.p

outline highlight.o

�

Acrobat JavaScript Object Specification 168

This property specifies the thickness of the border when stroking the perimeter of a field’s
rectangle. If the stroke color is transparent, this parameter has no effect except in the case of a
beveled border. You can set the lineWidth property in JavaScript by using the integer values
below:

Example:
// Change the border width of the Text Box to medium thickness

f.lineWidth = 2

The default value for lineWidth is 1 (thin). Any integer value can be used. However, values
beyond 5 may distort the field’s appearance.

In older versions of this specification, this property was borderWidth. The use of borderWidth
is now discouraged but for backwards compatibility is still valid.

multiline

Type: Boolean Fields: text Access: R/W

This property determines how the text is wrapped within the field. If multiline is false, the
default, the text field can be a single line only; if true, multiple lines are allowed and wrap to
field boundaries.

multipleSelection

Type: Boolean Fields: listbox Access: R/W

This property, if true, indicates that the field, a listbox, allows multiple selection of the items.

See also Event.type, Field.value, and currentValueIndices.

Line Width Key Value

none 0

thin 1

medium 2

thick 3

�

5.0 �

Acrobat JavaScript Object Specification 169

name

Type: String Fields: all Access: R

This property allows you to access the fully qualified field name of the field as a string object.

var f = this.getField("myField");

console.println(f.name); // displays "myField" in console window

numItems

Type: Integer Fields: combobox, listbox Access: R

The number of items in the combobox or listbox.

page

Type: Integer | Array Fields: all Access: R

Returns the page number or an array of page numbers of a field. If the field has only one
appearance in the document, the page property will return an integer representing the (0 based)
page number of the page on which the field appears. If the field has multiple appearances, it
will return an array of integers, each member of which is a (0 based) page number of an
appearance of the field. The order in which the page numbers appear in the array is determined
by the order in which the individual widgets of this field were created (and is unaffected by
tab-order).

Example:
var f = this.getField("myField");

if (typeof f.page == "number")

console.println("This field only occurs once on page " + f.page);

else

console.println("This field occurs " + f.page.length + " times);

password

Type: Boolean Fields: text Access: R/W

This property causes the field to display asterisks for the data entered into the field. Upon
submission, the actual data entered is sent. Fields that have the password attribute set will not
have the data in the field saved when the document is saved to disk.

5.0

�

Acrobat JavaScript Object Specification 170

print

Type: Boolean Fields: all Access: R/W

This property determines whether a given field prints or not. Set the print property to true to
allow the field to appear when the user prints the document, set it to false to prevent printing.
This property can be used to hide control buttons and other fields that are not useful on the
printed page.

var f = this.getField("myField");

f.print = false;

This property has been superseded by the display property and its use is discouraged.

readonly

Type: Boolean Fields: all Access: R/W

This property sets or gets the read-only characteristic of a field. If a field is read-only, the user
can see the field but cannot change it.

rect

Type: Array Fields: all Access: R/W

This property takes (in the case of set), or returns (in the case of get) an array of four numbers
in Rotated User Space that specifies the size and placement of the form field. These four
numbers are, in this order: upper-left x, upper-left y, lower-right x and lower-right y
coordinates.

Example:
// lay out a 2 inch wide text, field just to the right of the field "myText"

var f = this.getField("myText"); // get the field object

var myRect = f.rect; // and get it’s rectangle

// make needed coordinate adjustments for new field

myRect[0] = f.rect[2]; // the ulx for new = lrx for old

myRect[2] += 2 * 72; // move over two inches for lry

f = this.addField("myNextText", "text", this.pageNum, myRect);

f.strokeColor = color.black;

� �

�

�

Acrobat JavaScript Object Specification 171

Example:
// move a button field that already exists over 10 points to the right.

var b = this.getField("myButton");

var aRect = b.rect; // make a copy of b.rect

aRect[0] += 10; // increment first x-coordinate by 10

aRect[2] += 10; // increment second x-coordinate by 10

b.rect = aRect; // update the value of b.rect

Note: Note: Annot Object also has a rect property, but: 1) the coordinates are not in
Rotated User Space, and 2) they are in different order than in Field.rect.

required

Type: Boolean Fields: all but button Access: R/W

This property sets or gets the required characteristic of a field. If a field is required its value
must be non-null when the user clicks a submit button that causes the value of the field to be
posted. If the field value is null, the user receives a warning message and the submit does not
occur.

Example:
var f = this.getField("myField");

f.required = true;

strokeColor

Type: Array Fields: all Access: R/W

This property specifies the stroke color for a field which is used to stroke the rectangle of the
field with a line as large as the line width. Values are defined by using transparent, gray, RGB
or CMYK color. Refer to the Color Arrays section for information on defining color arrays and
how values are used with this property.

In older versions of this specification, this property was borderColor. The use of borderColor
is now discouraged but for backwards compatibility is still valid.

�

�

Acrobat JavaScript Object Specification 172

style

Type: String Fields: checkbox, radiobutton Access: R/W

This property allows the user to set the style of a check box or a radio button, that is, sets the
glyph used to indicate that the check box or radio button has been selected. Valid styles
include "check", "cross", "diamond", "circle", "star", and "square". The following table lists
the style properties and the associated keywords:

The following example illustrates the use of this property and the style object:

var f = this.getField("myCheckbox");

f.style = style.ci;

submitName

Type: String Fields: all Access: R/W

If nonempty, this property is used during form submission instead of the field name. Only
applicable if submitting in HTML format (i.e. urlencoded).

textColor

Type: Array Fields: all Access: R/W

This property determines the foreground color of a field. It represents the text color for text,
button, or listbox fields and the check color for check box or radio button fields. Values are
defined the same as the fillColor property. Refer to the Color Arrays section for information on
defining color arrays and how values are set and used with this property.

�

Style Keyword

check style.ch

cross style.cr

diamond style.di

circle style.ci

star style.st

square style.sq

5.0 �

�

Acrobat JavaScript Object Specification 173

var f = this.getField("myField");

f.textColor = color.red;

In older versions of this specification, this property was fgColor. The use of fgColor is now
discouraged but for backwards compatibility is still valid.

Note: An exception will be thrown if a transparent color space is used to set
textColor.

textFont

Type: String Fields: button, combobox, listbox, text Access: R/W

The textFont property determines the font that is used when laying out text in a text field,
combobox, listbox or button. Valid fonts are defined as properties of the "font" object as
follows:

The following example illustrates the use of this property and the font object.

�

Text Font Keyword

Times-Roman font.Times

Times-Bold font.TimesB

Times-Italic font.TimesI

Times-BoldItalic font.TimesBI

Helvetica font.Helv

Helvetica-Bold font.HelvB

Helvetica-Oblique font.HelvI

Helvetica-BoldOblique font.HelvBI

Courier font.Cour

Courier-Bold font.CourB

Courier-Oblique font.CourI

Courier-BoldOblique font.CourBI

Symbol font.Symbol

ZapfDingbats font.ZapfD

Acrobat JavaScript Object Specification 174

// set the font of "myField" to Helvetica

var f = this.getField("myField");

f.textFont = font.Helv;

An arbitrary font can be used when laying out a text field, combobox, listbox or button by
setting the value of textFont equal to a string that represents the PostScript name of the font.

Example:
// set the font of "myField" to Viva-Regular

var f = this.getField("myField");

f.textFont = "Viva-Regular";

Note: Use of arbitrary fonts as opposed to those listed in the font object will create
compatibility problems with older versions of the Viewer.

textSize

Type: Integer Fields: all Access: R/W

This property determines the text size (in points) that is used in all controls. In check box and
radio button fields, the text size determines the size of the check. Valid text sizes include zero
and the range from 4 to 144 inclusive. A text size of zero means that the largest point size that
will allow all text data to still fit in the field’s rectangle should be used.

// set the text size of myField to 28 point

this.getField("myField").textSize = 28;

type

Type: String Fields: all Access: R

This read-only property returns the type of the field as a string. Valid types that are returned
include "button", "checkbox", "combobox", "listbox", "radiobutton", "signature" and "text".

userName

Type: String Fields: all Access: R/W

5.0 Addition

�

�

Acrobat JavaScript Object Specification 175

This property returns/sets the user name of the field (short description) as a string. The user
name is intended to be used as tool tip text whenever the mouse cursor enters a field. It can
also be used as a user friendly name when generating error messages instead of the field name
(which can sometimes not be suitable for human consumption).

value

Type: Various Fields: all but button Access: R/W

This property gets the value of the field data that the user has entered. Depending on the type
of the field, the value may be a string, date, or number. Typically, the value is used to create
calculated fields.

var oil = this.getField("Oil");

var filter = this.getField("Filter");

event.value = (oil.value + filter.value) * 1.0825;

In this example, the value of the field being calculated is set to the sum of the "oil" and "filter"
fields and multiplied by the state sales tax. Value is perhaps the most important of all the field
properties.

Note: In the case of signature fields if the field has been signed then a non-null
string is returned as the value.

If the field is a listbox that accepts multiple selection (See multipleSelection), an array can be
passed to set the value of the field. Similarly, value will return an array for a listbox with
multiple values currently selected.

Also, see related notes on type for the Event Object. A related property is valueAsString.

Note: However, the currentValueIndices property of a listbox that has multiple
selections is still the preferred (and most efficient) way to get and set the
value of this type of field.

�

5.0 Addition

Acrobat JavaScript Object Specification 176

valueAsString

Type: Various Fields: all but button Access: R

The value property attempts to convert the contents of a field contents to an “accepted format”;
for example, a field with a value of "020" is returned as "20", without the prefixed zero after
being converted to an integer type. The valueAsString returns the value of the field as a
JavaScript string; hence, in the example just cited, the value returned would be "020".

Field Methods

browseForFileToSubmit

Parameter: None
Returns: Nothing

When invoked on a text field for which the file select flag is set (checked), this methods pops
up a standard file selection dialog. The path entered through the dialog is automatically
assigned as the value of the text field

Example: The following code references a text field with the file select flag checked. This is a
mouse up action of a button field.

var f = this.getField("resumeField");

f.browseForFileToSubmit();

The file select flag can be set using the field property exportValues.

Note: If this method is invoked on a text field in which the exportValues flag is
clear (unchecked), an exception is thrown.

buttonGetCaption

Parameter: [nFace]
Returns: string

This method returns the caption associated with a button. If the optional parameter nFace is
specified, either the normal caption (0), down caption (1), or the rollover caption (2) can be
retrieved.

5.0 �

5.0 �

5.0

Acrobat JavaScript Object Specification 177

Example: This example places pointing arrows to the left and right of the caption on a button
field with icon and text.

// a mouse enter event

event.target.buttonSetCaption("=> "+event.target.buttonGetCaption()+" <=");

// a mouse exit event

var str = event.target.buttonGetCaption();

str = str.replace(/=> | <=/g, "");

event.target.buttonSetCaption(str);

The same effect can be created by having the same icon for rollover, and have the same text,
with the arrows inserted, for the rollover caption. This approach would be slower and cause the
icon to flicker. The above code gives a very fast and smooth rollover effect because only the
caption is changed, not the icon.

buttonGetIcon

Parameter: [nFace]
Returns: icon object

This method returns the Icon Object associated with a button. If the optional parameter nFace is
specified, either the normal icon (0), down icon (1), or the rollover icon (2) can be retrieved. If
nFace is not specified then it is assumed to be 0.

Example:
// Swap two button icons.

var f = this.getField("Button1");

var g = this.getField("Button2");

var temp = f.buttonGetIcon();

f.buttonSetIcon(g.buttonGetIcon());

g.buttonSetIcon(temp);

See also buttonSetIcon and buttonImportIcon for more examples of usage.

buttonImportIcon

Parameter: [cPath], [nPage]
Returns: Integer

This method imports the appearance of a button from another PDF file.

5.0

5.0 Additions

Acrobat JavaScript Object Specification 178

The buttonImportIcon method takes two optional parameters. If no parameters are passed, a
dialog is presented that prompts the user to select a PDF file available on the system.

cPath is the device-independent pathname for the file. See Section 3.10.1 of the PDF Reference
for a description of the device-independent pathname format.

nPage is the zero based page number from the file to turn into an icon. The default is 0.

This method returns an integer:

Example: It is assumed that we are connected to an employee information database. We
communicate with the database using the ADBC Object and related objects. An employee’s
record is requested and three columns are utilized, FirstName, SecondName and Picture. The
Picture column, from the database, contains a device independent path to the employee’s
picture, stored in PDF format. The script might look like this:

var f = this.getField("myPicture");

f.buttonSetCaption(row.FirstName.value + " " + row.LastName.value);

if (f.buttonImportIcon(row.Picture.value) != 0)

f.buttonImportIcon("/F/employee/pdfs/NoPicture.pdf");

The button field "myPicture" has been set to display both icon and caption. The employee’s
first and last names are concatenated to form the caption for the picture. Note that if there is an
error in retrieving the icon, a substitute icon could be imported.

buttonSetCaption

Parameter: cCaption, [nFace]
Returns: Nothing

This method sets the caption, cCaption, associated with a button. If the optional parameter
nFace is specified, either the normal caption (0), down caption (1), or the rollover caption (2)
can be set. If nFace is not specified then it is assumed to be 0. See the properties related to
button/caption positioning for details on how the icon and caption actually get placed on the
button face.

Return Codes

Code Description

1 The user cancelled the dialog

0 No error

-1 The selected file couldn’t be opened

-2 The selected page was invalid

5.0 �

Acrobat JavaScript Object Specification 179

Example:
var f = this.getField("myButton");

f.buttonSetCaption("Hello");

A related method, buttonGetCaption, for a more extensive example.

buttonSetIcon

Parameter: oIcon, [nFace]
Returns: Nothing

This method sets the Icon Object, oIcon, associated with a button. If the optional parameter
nFace is specified, either the normal icon (0), down icon (1), or the rollover icon (2) can be
set. If nFace is not specified then it is assumed to be 0. See the properties related to button
positioning and placement for details on how the icon actually gets rendered on the button
face.

Example: This example takes every named icon in the document and creates a listbox using the
names. Selecting an item in the listbox sets the icon with that name as the button face of the
field "myPictures". What follows is the mouse up action of the button field "myButton".

var f = this.getField("myButton")

var aRect = f.rect;

aRect[0] = f.rect[2]; // place listbox relative to the

aRect[2] = f.rect[2] + 144; // position of "myButton"

var myIcons = new Array();

var l = addField("myIconList", "combobox", 0, aRect);

l.textSize = 14;

l.strokeColor = color.black;

for (var i = 0; i < this.icons.length; i++)

 myIcons[i] = this.icons[i].name;

l.setItems(myIcons);

l.setAction("Keystroke",

'if (!event.willCommit) {\r\t'

+ 'var f = this.getField("myPictures");\r\t'

+ 'var i = this.getIcon(event.change);\r\t'

+ 'f.buttonSetIcon(i);\r'

+ '}');

The named icons themselves can be imported into the document through an interactive scheme,
such as the example given in addIcon or through a batch sequence.

See also buttonGetIcon.

5.0 �

Acrobat JavaScript Object Specification 180

checkThisBox

Parameters: nWidget, [bCheckIt]
Returns: Nothing

This method takes as first parameter the zero-based index, nWidget, of an individual radio
button or check box widget for this field. The index is determined by the order in which the
individual widgets of this field were created (and is unaffected by tab-order). The second,
optional parameter is a boolean, indicating whether the widget in question should be checked.
The default is true. Only checkboxes can be unchecked, radio buttons cannot. However, you
can reset a radio button (e.g. use the doc-level method resetForm) if you really need to uncheck
it, but this will only work if its default state is “unchecked” (see method defaultIsChecked).
Example:

// check the box "ChkBox"

var f = this.getField("ChkBox");

f.checkThisBox(0,true);

Note: For a set of radio buttons that don't have duplicate export values, you can
alternatively set the property value to the export value of the individual
widget that should be checked (or pass an empty string if none should be).

clearItems

Parameters: None
Returns: Nothing

This method clears all the values in a listbox or combobox.

// Clear the field myList

var f = this.getField("myList");

f.clearItems();

defaultIsChecked

Parameters: nWidget, [bIsDefaultChecked]
Returns: Boolean

5.0

�

5.0

Acrobat JavaScript Object Specification 181

This method takes as first parameter the zero-based index, nWidget, of an individual radio
button or check box. The index is determined by the order in which the individual widgets of
this field were created (and is unaffected by tab-order). The second, optional parameter is a
boolean, indicating whether the field in question should be checked by default (e.g. when the
field gets reset). The default is true.

Example:
// change the default of "ChkBox" to checked

var f = this.getField("ChkBox");

f.defaultIsChecked(0,true);

this.resetForm(["ChkBox"]);

Note: For a set of radio buttons that don't have duplicate export values, you can
alternatively set the property defaultValue to the export value of the
individual widget that should be checked by default (or pass an empty string
if none should be).

deleteItemAt

Parameters: [nIdx]
Returns: Nothing

This function deletes an item in a combobox or a listbox. The parameter nIdx is the index of the
item in the list to delete (zero-based). If nIdx is not specified then the currently selected item is
deleted.

If the current selection is deleted, for the case of a listbox, the field no longer has a current
selection. Having no current selection can an lead to unexpected behavior by this method if is
again invoked without parameters on this same field; there is no current selection to delete. It
is important, therefore, to make a new selection so that this method will behave as documented.
A new selection can be made by using the field property currentValueIndices.

Example:
var a = this.getField("MyListBox");

a.deleteItemAt(); // delete current item, and...

a.currentValueIndices = 0; // select top item in list

getArray

Parameters: None
Returns: an array of fields.

4.0 �

Acrobat JavaScript Object Specification 182

This function returns an array of terminal children fields (i.e. fields that can have a value) for a
parent field. This method can be particularly useful for doing field calculations in tables where
a parent field value is the sum of all of its children.

// f has 3 children: f.v1, f.v2, f.v3

var f = this.getField("f");

var a = f.getArray();

var v = 0.0;

for (j =0; j < a.length; j++)

v += a[j].value;

// v contains the sum of all the children of field "f"

getItemAt

Parameters: nIdx, [bExportValue]
Returns: export value or item name in a list or combobox

This function gets the internal value of an item in a combobox or a listbox. The parameter nIdx
is the index of the item in the list to obtain. If nIdx is set to -1, it returns the value of the last
item in the list.

The value of the optional second parameter, bExportValue, determines the type of value
returned. If bExportValue is set to true, the default, and the requested item has an export value,
the export value is returned; otherwise, the item name is returned. If bExportValue is set to
false, then the item name is always returned.

Example: In the two examples that follow, assume there are three items on "myList": "First",
with an export value of 1; "Second", with an export value of 2; and "Third" with no export
value.

// returns value of first item in list, which is 1

var f = this.getField("myList");

var v = f.getItemAt(0);

The following example illustrates the use of the second optional parameter.

for (var i=0; i < f.numItems; i++)

console.println(f.getItemAt(i,true) + ": " + f.getItemAt(i,false));

The output to the console reads:

1: First

2: Second

5.0 Additions

Acrobat JavaScript Object Specification 183

Third: Third

Thus, by putting the second parameter to false the item name (face value) can be obtained,
even when there is an export value.

insertItemAt

Parameters: cName, [cExport], [nIdx]
Returns: Nothing

This function inserts a new item into a combobox or a listbox.

cName is the item name, that is, the name that will appear in the form. This methods works
only for a listbox or combobox.

cExport is the export value of the field when this item is selected. If no export value is
provided, the cName is used as the export value.

nIdx is the index in the list to insert the item at. If nIdx is 0, cName is inserted at the top of the
list. If nIdx is –1, cName is inserted at the end of the list. The default value for nIdx is 0.

var l = this.getField("myList");

l.insertItemAt("sam", "s", 0); /* inserts sam to top of list l */

isBoxChecked

Parameters: nWidget
Returns: Boolean

This method takes as parameter the zero-based index, nWidget, of an individual radio button or
check box widget for this field. The index is determined by the order in which the individual
widgets of this field were created (and is unaffected by tab-order). This method returns a
Boolean, indicating whether the widget in question is currently checked.

Example:
var f = this.getField("ChkBox");

if(f.isBoxChecked(0))

 app.alert("The Box is Checked");

else

 app.alert("The Box is not Checked");

�

5.0

Acrobat JavaScript Object Specification 184

Note: For a set of radio buttons that don't have duplicate export values, you can
alternatively get the property value, which is equal to the export value of the
individual widget that is currently checked (or returns an empty string, if
none is).

isDefaultChecked

Parameters: nWidget
Returns: Boolean

This method takes as parameter the zero-based index, nWidget, of an individual radio button or
check box widget for this field. The index is determined by the order in which the individual
widgets of this field were created (and is unaffected by tab-order). This method returns a
Boolean, indicating whether the widget in question is checked by default (e.g. when the field
gets reset).

Example:
var f = this.getField("ChkBox");

if (f.isDefaultChecked(0))

 app.alert("The Default: Checked");

else

 app.alert("The Default: Unchecked");

Note: For a set of radio buttons that don't have duplicate export values, you can
alternatively get the property; defaultValue, which is equal to the export
value of the individual widget that is checked by default (or returns an empty
string, if none is).

setAction

Parameters: cTrigger, cScript
Returns: Nothing

This method sets the action of the field for a given trigger.

cTrigger: A string that sets the trigger for the action. The values of this first parameter are
"MouseUp", "MouseDown", "MouseEnter", "MouseExit", "OnFocus", "OnBlur", "Keystroke",
"Validate", "Calculate" and "Format".

5.0

�

Acrobat JavaScript Object Specification 185

cScript: The JavaScript code that is to be executed when the trigger is activated.

Example:
var f = this.addField("actionField", "button", 0 , [20, 100, 100, 20]);

f.setAction("MouseUp", "app.beep(0);");

f.fillColor = color.ltGray;

f.buttonSetCaption("Beep");

f.borderStyle = border.b;

f.lineWidth = 3;

f.strokeColor = color.red;

f.highlight = highlight.p;

The example following buttonSetIcon is another illustration of this method.

setFocus

Parameters: None
Returns: Nothing

This method sets the keyboard focus to this field. This can involve changing the page that the
user is currently on and/or causing the view to scroll to a new position in the document. This
method automatically brings the document that the field resides in to the front, if it’s not
already there.

Example:
// Search for a certain open doc, then focus in on the field of interest.

var d = app.activeDocs;

for (var i = 0; i < d.length; i++) {

if (d[i].info.Title == "Response Document") {

d[i].getField("name").value="Enter your name here: "

d[i].getField("name").setFocus(); // also brings the doc to front.

break;

}

}

See also the bringToFront method.

setItems

Parameters: oArray
Returns: Nothing

4.05

4.0 �

Acrobat JavaScript Object Specification 186

This method sets the list of items for a combobox or a listbox. The single parameter, oArray,
necessary to call this method must be an array. Each element in oArray must either be an
object convertible to a string or another array. If the element can be converted to a string, the
user and export values for the list item are equal to the string. If the element is an array it must
consist of two sub-elements. The first sub-element should be convertible to a string which will
be used as the user value, the second element will be used as the export value.

Examples:
var l = this.getField("ListBox");

l.setItems(["One", "Two", "Three"]);

var c = this.getField("StateBox");

c.setItems([["California", "CA"],["Massachusetts", "MA"],["Arizona", "AZ"]]);

var c = this.getField("NumberBox");

c.setItems(["1", 2, 3, ["PI", Math.PI]]);

See also the clearItems, getItemAt, and insertItemAt field methods.

signatureInfo

Parameters: [oSig]
Returns: Object Access: R

Returns a signatureInfo Object that enumerates the properties of the signature. A signature
handler may specify additional properties specific to the signature handler. This type of
generic object is used when signing as well.

By default this method uses the handler that created the signature to retrieve the signatureInfo
object. Optionally, an oSig parameter, a signature handler object, can be specified; in this case,
oSig is used to acquire the signatureInfo object, even if oSig is not an engine for the same
handler as was used to create the signature.

All signature handlers define the following properties:

5.0 �

signatureInfo Object
Property Type Access Description

date date R Date the signature was signed in PDF date
format.

handlerName string R The language independent name of the handler
used to apply the signature.

handlerUserName string R The language dependent name of the signature
handler.

Acrobat JavaScript Object Specification 187

Writable properties can be specified when signing the object. See the signatureSign method.

The following table list the codes returned by the Field.signatureInfo.status, and their meaning.

Example:
var f = this.getField("mySignature"); // get signature field

var sigInfo = f.signatureInfo();

// returns "Acrobat Self-Sign Security"
console.println(sigInfo.handlerName);

location string R/W User specified location when signing.

name string R Name of the user that signed the field.

numFieldsAltered number R Number of fields altered between the previous
signature and ’this’ signature.

numFieldsFilledIn number R Number of fields filled in between the previous
signature and ’this’ signature.

numPagesAltered number R Number of pages altered between the previous
signature and ’this’ signature.

numRevisions number R Number of revisions in the document.

reason string R/W User specified reason for signing.

revision number R The revision that this signature corresponds to.

status number R The status of the last call to the processor
intensive signatureValidate method. See the
Return Codes of the status Property table
below.

statusText string R The language dependent text string suitable
for user display denoting the status of the
last call to the processor intensive
signatureValidate method.

Return Codes of the status Property
Status Code Meaning

-1 Not a signature field

0 Signature is blank

1 Unknown status

2 Signature is invalid

3 Signature of document is valid, identity of signer could not be verified

4 Signature of document is valid and identity of signer is valid.

Acrobat JavaScript Object Specification 188

var msg = "Status = " + sigInfo.status +

" ("+ sigInfo.statusText + ")";

console.println(msg);

console.println(sigInfo.name);

console.println(sigInfo.date);

console.println(sigInfo.location);

console.println(sigInfo.reason);

Note: Some properties of a signature handler, for example, certificates, may return
a null value until the signature is validated. Therefore, signatureInfo should
be called again after signatureValidate. (certificates is a property of the
PPKLite Signature Handler Object.)

signatureSign

Parameters: oSig, [oInfo], [cDIPath]
Returns: bSuccess

Signs the field with the specified signature handler.

oSig is the signature handler object to sign with. See the Security Object’s handlers property and
the getHandler method. Some signature handlers require that the user be logged in before
signing can occur.

oInfo is a generic object specifying the writable properties of the signature. See also the
signatureInfo method and the PPKLite Signature Handler Object.

cDIPath is the device independent path to the file to save to following the application of the
signature. If cDIPath is not specified, the file is saved back to its original location.

The method returns true if the signature was applied successfully, false otherwise. Before a
signature field can be signed, it must be cleared. See the resetForm method of the Doc Object.

The following example signs the "Signature" field with the PPKLite signature handler:

var ppklite = security.getHandler("Adobe.PPKLite"); // choose handler

ppklite.login("dps017", "/C/signatures/DPSmith.apf"); // login

var f = this.getField("mySignature"); // get signature field

this.resetForm(["mySignature"]); // clear it, and ...

f.signatureSign(ppklite, // sign it

{ password: "dps017", // provide password

location: "San Jose, CA", // ... see note below

5.0 � � �

Acrobat JavaScript Object Specification 189

reason: "I am approving this document",

contactInfo: "dpsmith@adobe.com",

appearance: "Fancy"});

See the getHandler and login methods from the PPKLite Signature Handler Object.

Note: In the above example, a password was provided. This may or may not have
been necessary depending whether the Password Timeout had expired. The
Password Timeout can be set through the user interface (Tools > Self-Sign
Security > Users Settings) or, programmatically, by the setPasswordTimeout
method.

Security �: This method can only be executed during batch, console, menu, or
application initialization events. See the Event Object for a discussion of
Acrobat JavaScript events.

signatureValidate

Parameters: [oSig]
Returns: nStatus

Returns the validity status of the signature. This routine can be computationally expensive and
take a significant amount of time depending on the signature handler used to sign the signature.
The return value is described in signatureInfo.status. See also the signatureInfo.statusText
property.

By default this method uses the handler that created the signature by default. Optionally, the
oSig parameter, a signature handler object, can be specified. In this case, oSig is used to
validate the signature even if oSig is not an engine for the same handler as was used to create
the signature.

If the original handler used to create the signature is not installed, oSig can be used to validate
the signature.

If oSig is from same handler as was used to create signature then different logon contexts for
validating can be used.

Example:
var f = this.getField("mySignature") // get signature field

var sigInfo = f.signatureInfo();

if (f.signatureValidate())

if (sigInfo.status < 3)

5.0 �

Acrobat JavaScript Object Specification 190

var msg = "Signature not valid! " + sigInfo.statusText;

else

var msg = "Signature valid! " + sigInfo.statusText;

else

var msg = "Validation failed!";

app.alert(msg);

Acrobat JavaScript Object Specification 191

FullScreen Object

The FullScreen object is the interface to fullscreen (presentation mode) preferences and
properties. To acquire a FullScreen object, use the fs property of the App Object .

FullScreen Properties

backgroundColor

Type: color array Access: R/W

This property determines the background color of the screen in full screen mode. See Color
Arrays for more details.

Example
app.fs.backgroundColor = color.ltGray;

clickAdvances

Type: Boolean Access: R/W

This property determines whether or not a mouse click anywhere on the page will cause the
viewer to advance one page.

cursor

Type: Number Access: R/W

This property determines the behavior of the mouse pointer in full screen mode. The
convenience cursor object defines all the valid cursor behaviors:

Example:
app.fs.cursor = cursor.visible;

5.0 �

Cursor Behavior Keyword

Always hidden cursor.hidden

Hidden after delay cursor.delay

Visible cursor.visible

Acrobat JavaScript Object Specification 192

defaultTransition

Type: Number Access: R/W

This property determines the default transition to use when advancing pages in full screen
mode. See the transitions property for a valid list of transition names.

Example: Put document into presentation mode

app.fs.defaultTransition = "WipeDown";

app.fs.isFullScreen = true;

Note: No Transition is equivalent to setting app.fs.defaultTransition = "";

escapeExits

Type: Boolean Access: R/W

This property determines whether or not the escape key can be used to exit full screen mode.

isFullScreen

Type: Boolean Access: R/W

This property puts the Acrobat viewer in fullscreen mode vs. regular viewing mode.

Example:
app.fs.isFullScreen = true;

In the above example, the Adobe Acrobat viewer is set to fullscreen mode when isFullScreen is
set to true. If isFullScreen was false then the default viewing mode would be set. The default
viewing mode is defined as the original mode the Acrobat application was in before full screen
mode was initiated.

Fullscreen only works if there are documents open in the Acrobat viewer window.

See defaultTransition for an example.

Note: A PDF document being viewed from within a web browser cannot be put into
fullscreen mode.

loop

Type: Boolean Access: R/W

Acrobat JavaScript Object Specification 193

This property determines whether or not the document will loop around to the beginning of the
document in response to a page advance (mouse click, keyboard, and/or timer generated) in
full screen mode.

timeDelay

Type: Number Access: R/W

This property determines the default number of seconds before the page automatically
advances in full screen mode. See useTimer to activate/deactivate automatic page turning.

Example:
app.fs.timeDelay = 5; // delay 5 seconds

app.fs.useTimer = true; // activate automatic page turning

app.fs.usePageTiming = true; // allow page override

app.fs.isFullScreen = true; // go into fullscreen

transitions

Type: Array Access: R

This property returns an array of strings representing valid transition names implemented in
the viewer. The script:

console.println("[" + app.fs.transitions + "]");

would produce the following results:

[Replace,WipeRight,WipeLeft,WipeDown,WipeUp,SplitHorizontalIn,

SplitHorizontalOut,SplitVerticalIn,SplitVerticalOut,BlindsHorizontal,

BlindsVertical,BoxIn,BoxOut,GlitterRight,GlitterDown,GlitterRightDown,

Dissolve,Random]

Note: No Transition is equivalent to setting app.fs.defaultTransition = "".

See also defaultTransition.

usePageTiming

Type: Boolean Access: R/W

This property determines whether or not automatic page turning will respect the values
specified for individual pages in full screen mode. Programmatically, transition properties of
individual pages can be set using setPageTransitions

Acrobat JavaScript Object Specification 194

useTimer

Type: Boolean Access: R/W

This property determines whether or not automatic page turning is enabled in full screen mode.
See timeDelay to set the default time interval before proceeding to the next page.

Acrobat JavaScript Object Specification 195

Global Object
The Global object is a static JavaScript object that allows you to share data between documents
and to have data be persistent across sessions. This is referred to as persistent global data.
Global data-sharing and notification across documents is done through a subscribe mechanism.
This mechanism gives you the ability to monitor global data variables and report their value
changes across documents.

Global Object Properties

Global data can be specified by adding properties to the global object. The property type can
be a string, a boolean, or a number. For example, to add a variable called "radius" and to allow
all document scripts to have access to this variable, a script would simply define it as

global.radius = 8;

The global variable "radius" is now known across documents throughout the current viewer
session. To clarify further, suppose two files, A.pdf and B.pdf, are open in the Viewer. Assume
it is in A.pdf that the above declaration is made. From within file A.pdf or B.pdf, you can then
calculate the volume of a sphere whose radius is global.radius

var V = (4/3) * Math.PI * Math.pow(global.radius, 3);

and obtain the same result 2144.66058. If the value of global.radius is changed and the above
script is executed again, the value of V will be changed accordingly.

To delete a variable or a property from the global object, use the delete operator to remove the
defined property. For more information on the reserved JavaScript keyword delete, please see
Core JavaScript 1.4 Documentation. For example, to remove the property "radius" from the global
object, call the following script:

delete global.radius

Global Object Methods

setPersistent

Parameters: cVariable, bPersist
Returns: Nothing

This method sets cVariable to be persistent. It requires that bPersist is set true. This means the
cVariable will exist across invocations of Acrobat. If bPersist is false (the default for any
global property) then the property will be accessible across documents but not across the
Acrobat Viewer sessions. For example, to make the "radius" property persistent and accessible
for other documents you could use:

�

Acrobat JavaScript Object Specification 196

global.radius = 8; // declare radius to be global

global.setPersistent("radius", true); // now say it’s persistent

The volume calculation, defined above, will now yield the same result across viewer sessions,
or until the value of global.radius is changed.

Note: Persistent global data only applies to variables of type boolean, number or
string. For all persistent data there is a 32k limit for the maximum size of
the global persistent variables. Any data added to the string after the 32k
limit will be dropped.

It is recommended that JavaScript developers building scripts for Acrobat, utilize some type of
naming convention when specifying persistent global variables. One suggestion is to start all
variables with your company name. For example, if your company name is Xyz, start all
variables with "xyz_". This will prevent collisions with other persistent global variable names
throughout the documents.

Note: The global variables that are persistent are recorded in the glob.js file
located in the user’s folder for Folder Level JavaScripts upon application exit
and re-loaded at application start.

subscribe

Parameters: cVariable, fCallback
Returns: Nothing

This method subscribes to the global property cVariable. If this property is changed, even in
another document, the function specified by fCallback will be called. Multiple subscribers are
allowed for a published property.

The subscribe methods enables you to automatically update one or more fields when the value
of the subscribed global variable changes, as the following example attempts to illustrate.

Example: Suppose there are two files, setRadius.pdf and calcVolume.pdf, open in Acrobat or
Reader.

• In setRadius.pdf there is a single button with the code: global.radius = 2;

• In calcVolumne.pdf there there a Document-Level JavaScript named subscribe:

// In the Tools > JavaScripts > Document JavaScripts

global.subscribe("radius", RadiusChanged);

5.0

Acrobat JavaScript Object Specification 197

function RadiusChanged(x) // callback function

{

 var V = (4/3) * Math.PI * Math.pow(x,3);

getField("MyVolume").value = V; // put value in text field

}

• Open both files in the Viewer, now, clicking on the button in setRadius.pdf file immediately gives
an update in the text field "MyVolume" in calcVolume.pdf of 33.51032 (as determined by
global.radius = 2).

The syntax of the callback function is as follows:

function fCallback(newval) {

// newval is the new value of the global variable you have subscribed to.

< code to process the new value of the global variable >

}

Acrobat JavaScript Object Specification 198

Identity Object

The Identity object is a static object that identifies the current user of the application.

Identity Object Properties

Security ��These properties are only accessible during batch, console, menu, and
application initialization events in order to protect the privacy of the user.

corporation

Type: String Access: R

This property is the corporation name that the user has entered in the identity preferences
panel.

email

Type: String Access: R

This property is the email address that the user has entered in the identity preferences panel.

loginName

Type: String Access: R

This property is the login name as registered by the operating system.

name

Type: String Access: R

This property is the user name that the user entered in the identity preferences panel.

Example:
console.println("Your name is " + identity.name);

console.println("Your e-mail is " + identity.email);

5.0 �

Acrobat JavaScript Object Specification 199

Index Object

The Index object is a non-creatable object returned by various methods of the Search Object.

Index Object Properties

available

Type: Boolean Access: R

This property indicates whether or not the index is available for selection and searching. An
index may be unavailable if a network connection is down or a CD-ROM is not inserted, or if
the index administrator has brought the index down for maintenance purposes.

name

Type: String Access: R

This property is the name of the index as specified by the index administrator at indexing time.

Example:
// Enumerate all of the indexes and dump their names

for (var i = 0; i < search.indexes.length; i++) {

console.println("Index[" + i + "] = " + search.indexes[i].name);

}

See the indexes property, which returns an array of the index objects currently accessed by the
search engine, in the section devoted to the Search Object for a description of this method.

path

Type: String Access: R

This property is the device dependent path where the index resides. See Section 3.10.1, “File
Specification Strings”, in the PDF Reference for exact syntax of the path.

selected

Type: Boolean Access: R/W

This property indicates whether the index is to participate in the search. If selected is true, the
index will be searched as part of the query, if false it will not be. Setting or unsetting this
property is equivalent to checking the selection status in the index list dialog.

5.0

Acrobat JavaScript Object Specification 200

PlugIn Object

A plug-in object represents an extension to the viewer that extends its functionality. See also
the plugIns method of the App Object.

PlugIn Object Properties

certified

Type: Boolean Access: R

If true indicates that the plug-in is certified by Adobe. Certified plug-ins have undergone
extensive testing to ensure that breaches in application and document security do not occur.
The user can configure the viewer to only load certified plug-ins.

Example:
var aPlugins = app.plugIns;

var j=0;

for (var i=0; i < aPlugins.length; i++)

if (!aPlugins[i].certified) j++;

console.println("Report: There are " + j + " uncertified plugins loaded.");

loaded

Type: Boolean Access: R

If true indicates that the plug-in was loaded.

name

Type: String Access: R

Returns the name of the plug-in.

Example:
// get array of PlugIn Objects

var aPlugins = app.plugIns;

// get number of plugins

var nPlugins = aPlugins.length;

// enumerate names of all plugins

for (var i = 0; i < nPlugins; i++)

 console.println("Plugin \#" + i + " is " + aPlugins[i].name);

5.0

Acrobat JavaScript Object Specification 201

path

Type: string Access: R

This property defines the device independent path to the plug-in. See “File Specification
Strings“, Section 3.10.1, in the PDF Reference for the exact syntax of the path.

version

Type: number Access: R

Returns the version number of the plug-in. The integral part of the version number indicates
the major version, the decimal part indicates the minor and update versions. For example, 5.11
would indicate that the plug-in is major version 5, minor version 1, and update version 1.

Acrobat JavaScript Object Specification 202

PPKLite Signature Handler Object
The PPKLite Signature Handler Object exposes the functionality of Acrobat Self-Sign Security
to JavaScript.

This object can be obtained by using the getHandler method of the Security Object.

In addition to the standard set of properties for the signatureInfo Object, the PPKLite Signature
Handler exposes the following:

The certificate object is a generic object comprised of six read-only properties:

Property Type Access Description

appearance string R/W Appearance to use when signing this field

contactInfo string R/W User specified contact information for determining trust,
e.g. email address or telephone number

certificates array R Array specifying a hierarchy of certificates that identify
the signer. The first element is the signer’s certificate and
subsequent elements are certificate authorities that
issued the certificate in the previous element. For
PPKLite, there is only one entry because certificates are
self-issued.

password string W Password required to sign a signature field

Property Type Access Description

binary string R Returns the return the binary certificate as a hex string

issuerDN object R Distinguished name of the issuer of the certificate

MD5Hash string R MD5 hash of the certificate. This provides a unique
fingerprint for this certificate.

serialNumber string R In conjunction with the issuerDN uniquely identifies this
certificate

SHA1Hash string R SHA1 hash of the certificate. This provides a unique
fingerprint for this certificate.

subjectCN string R Common name of the signer

subjectDN object R Distinguished name of the signer

Acrobat JavaScript Object Specification 203

The subjectDN and issuerDN are themselves RDN objects (Relative Distinguished Name
objects) which have the following properties.

Examples: The following illustrates how to access these properties.

var f = this.getField("mySignature"); // uses the ppklite sig handler

var Info = f.signatureInfo();

// some standard signatureInfo properties

console.println("name = " + Info.name);

console.println("reason = " + Info.reason);

console.println("date = " + Info.date);

// additional signatureInfo properties from PPKLite

console.println("contact info = " + Info.contactInfo);

// get the certificate; first (and only) one

var certificate = Info.certificates[0];

// common name of the signer

console.println("subjectCN = " + certificate.subjectCN);

console.println("serialNumber = " + certificate.serialNumber);

// now display some information about this the distinguished name of signer

console.println("subjectDN.cn = " + certificate.subjectDN.cn);

console.println("subjectDN.o = " + certificate.subjectDN.o);

PPKLite Object Properties

appearances

Type: Array Access: R

RDN Object
Property Type Access Description

c string R Country

cn string R Common name

o string R Organization name

ou string R Organizational unit

5.0 �

Acrobat JavaScript Object Specification 204

Returns an array containing the language independent names of the available appearances for
the specified signature handler. If the signature handler does not support alternate appearances
then it will return a null object.

isLoggedIn

Type: Boolean Access: R

Returns true if currently logged into the PPKLite Signature Handler object.

Example:
var ppklite = security.getHandler("Adobe.PPKLite", true);

console.println("Is logged in = " + ppklite.isLoggedIn); // false

ppklite.login("dps017", "/C/signatures/DPSmith.apf");

console.println("Is logged in = " + ppklite.isLoggedIn); // true

loginName

Type: String Access: R

Name of the user logged into the signature handler. This is an empty string if no one is logged
in.

loginPath

Type: String Access: R

Device independent path to the user’s profile file used to login to the signature handler. This is
an empty string if no one is logged in.

name

Type: String Access: R

The name property returns the language independent name of the signature handler. This is
always “Adobe.PPKLite”.

5.0 �

5.0 �

5.0 �

5.0 �

Acrobat JavaScript Object Specification 205

signInvisible

Type: Boolean Access: R

Indicates that the signature handler is capable of generating invisible signatures.

signVisible

Type: Boolean Access: R

Indicates that the signature handler is capable of generating visible signatures.

uiName

Type: String Access: R

Returns the language dependent string for the signature handler. This string is suitable for user
interfaces.

PPKLite Object Methods

login

Parameters: [cPassword], [cDIPath]
Returns: bSuccess

Logs into the signature handler.

cPassword is the password necessary to access the user profile.

cDIPath is a device independent path to the user’s profile file.

Returns true if the login succeeded, false otherwise.

Example:
// use "Adobe.PPKLite" handler engine for the UI

var ppklite = security.getHandler("Adobe.PPKLite");

// login

ppklite.login("dps017", "/C/signatures/DPSmith.apf");

5.0 �

5.0 �

5.0 �

5.0 �

Acrobat JavaScript Object Specification 206

..... make a signature field and sign it

ppklite.logout();

See signatureSign for more details about signing a signature field.

logout

Parameters: None
Returns: Nothing

Logs out of the signature handler. See login, above.

newUser

Parameters: cPassword, cDIPath, oRDN
Returns: Nothing

This method will create a self-sign signature profile file.

cPassword, a required parameter, is the password for the profile to be created

The parameter, cDIPath, is the device independent path to the new user profile.

oRDN is a generic object or a RDN object. A RDN (relative distinguished name) is the object
containing the issuer or subject name for a certificate. (See RDN Object.) In the RDN or generic object
the only field that is required to be filled in is cn. If c is provided then it must be 2 characters, using the
ISO 3166 standard (e.g., 'US').

Example:
// Third parameter specified as a generic object

var ppklite = security.getHandler("Adobe.PPKLite");

ppklite.newUser("testpasswd", "/d/temp/FredNewUser.apf",

{ cn: "Fred NewUser", c: "US" });

Example: Once you get a certificate from a verified signature you can do the following to create a new
user profile:

var f = this.getField("mySignature");

f.signatureValidate();

var sigInfo = f.signatureInfo();

var certs = sigInfo.certificates;

var issuerDN = certs[0].issuerDN;

var subjectDN = certs[0].subjectDN;

5.0 �

5.0 �

Acrobat JavaScript Object Specification 207

// issuerDN and subjectDN have get/set properties cn, o, ou, c

subjectDN.cn = "DP Smith";

ppklite.newUser("dps017", "/d/profiles/DPSmith.apf", subjectDN);

setPasswordTimeout

Parameters: cPassword, iTimeout
Returns: Nothing

Sets number of seconds, iTimeout, after which password should expire between signatures. Set
iTimeout to 0 for always expire (i.e. password always required); set iTimeout to 0x7FFFFFFF
for password to never expire. Note that for new users, timeout is 0 (password always required).

cPassword is the Self-Sign Security password needed to set the timeout value.

setPasswordTimeout will throw an exception if the user has not logged in to the PPKLite
Signature Handler

Example: This example logs in to the PPKLite Signature Handler and sets the password
timeout to 30 seconds. If the password timeout has expired—30 seconds in this example—the
signer must provide a password. The password is not necessary if the password has not timed
out.

var ppklite= security.getHandler("Adobe.PPKLite");

ppklite.login("dps017", "/d/profiles/DPSmith.apf");

ppklite.setPasswordTimeout("dps017", 30);

5.0 �

Acrobat JavaScript Object Specification 208

Report Object
The Report object allows the user to programmatically generate PDF documents suitable for
reporting with JavaScript. Use the Report constructor to create a Report object; for example,

var rep = new Report();

The properties and methods can then be used to write and format a report.

Report Object properties

size

Type: Number Access: R/W

This property reflects the size of any text created by writeText. It is a multiplier. Text size is
determined by multiplying the size property by the default size for the given style.

Example:
var rep = new Report();

rep.size = 1.2;

rep.writeText("Hello World!");

absIndent

Type: Number Access: R/W

This property reflects the absolute indentation level. It is desirable to use indent/outdent only
whenever possible, as those calls correctly handle indentation overflows.

If a report is indented past the middle of the page, the effective indent is set to the middle.
Note that Report.divide does a little squiggly bit to indicate that it's been indented too far.

color

Type: Color Access: R/W

Read and set the color of any text and any divisions written into the report.

Example:

5.0 � �

5.0 � �

5.0 � �

Acrobat JavaScript Object Specification 209

var rep = new Report();

rep.size = 1.2;

rep.color = color.blue;

rep.writeText("Hello World!");

Text is written to the report with writeText and divisions (horizontal rules) are written using
divide.

Report Object Methods

breakPage

Parameters: None

Ends the current page and begins a new one.

divide

Parameters: [nWidth]

Writes a horizontal rule across the page at the current location with the given width. The rule
will go from the current indent level to the right most edge of the bounding box. If the indent
level is past the middle of the bounding box, the rule will have a squiggle bit in it to indicate
this.

indent

Parameters: [nPoints]

Increments the current indentation mark by nPoints or the default amount.

If a report is indented past the middle of the page, the effective indent is set to the middle.
Note that Report.divide() does a little squiggly bit to indicate that it's been indented too far.

See writeText for an example of usage.

5.0 � �

5.0 � �

5.0 � �

Acrobat JavaScript Object Specification 210

outdent

Parameters: [nPoints]

The opposite of indent; i.e. decrements the current indentation mark by nPoints or the default
amount.

See writeText for an example of usage.

open

Parameters: cTitle
Returns: a doc object

Ends report generation, opens the report in Acrobat and returns a Doc Object that can be used to
perform additional processing of the report.

Example:
var docRep = rep.open("myreport.pdf");

docRep.info.Title = "End of the month report: August 2000";

docRep.info.Subject = "Summary of comments at the August meeting";

See writeText for a more complete example.

save

Parameters: cDIPath, [cFS]

Ends report generation and saves the report to the device independent path, cDIPath.

Example:
rep.save("/c/myReports/myreport.pdf");

The optional cFS specifies a file system. The only value for cFS is "CHTTP"; in this case, the
cDIPath parameter should be an URL. Note that the second parameter is only relevant if the
web server supports WebDAV.

Example:
rep.save("http://www.mycompany/reports/myreport.pdf", "CHTTP");

5.0 � �

5.0 � �

5.0 � � �

Acrobat JavaScript Object Specification 211

Security �: This method can only be executed during batch or console events. See
the Event Object for a discussion of Acrobat JavaScript events.

mail

Parameters: [bUI], [cTo], [cCc], [cBcc], [cSubject], [cMsg]

Ends report generation and mails the report. Parameters are just like mailDoc.

Report

Parameters: [aMedia], [aBBox]

A Constructor. Creates a new report object with the given media and bounding boxes (values
are defined in points or 1/72 of an inch). Defaults to a 8.5 x 11 inch media box and a bounding
box that is indented .5 inches on all sides from the media box.

writeText

Parameters: String

Writes out a block of text to the report. Every call to writeText is guaranteed to begin on a new
line at the current indentation mark. writeText correctly wraps Roman, CJK, and WGL4 text.

Example:
// Get the comments in this document, and sort by author

this.syncAnnotScan();

annots = this.getAnnots({nSortBy: ANSB_Author});

// open a new report

var rep = new Report();

rep.size = 1.2;

rep.color = color.blue;

rep.writeText("Summary of Comments: By Author");

rep.color = color.black;

rep.writeText(" ");

5.0 � �

5.0 � �

5.0 � �

Acrobat JavaScript Object Specification 212

rep.writeText("Number of Comments: " + annots.length);

rep.writeText(" ");

var msg = "\200 page %s: \"%s\"";

var theAuthor = annots[0].author;

rep.writeText(theAuthor);

rep.indent(20);

for (var i=0; i < annots.length; i++) {

if (theAuthor != annots[i].author) {

theAuthor = annots[i].author;

rep.writeText(" ");

rep.outdent(20);

rep.writeText(theAuthor);

rep.indent(20);

}

rep.writeText(util.printf(msg, 1 + annots[i].page, annots[i].contents));

}

// now open the report

var docRep = rep.open("myreport.pdf");

docRep.info.Title = "End of the month report: August 2000";

docRep.info.Subject = "Summary of comments at the August meeting";

See the file Annots.js for additional examples of the Report object.

Acrobat JavaScript Object Specification 213

Search Object

The Search object is a static object that accesses the functionality provided by the Acrobat
Search plug-in. This plug-in must be installed in order to interface with the Search object (see
the available property).

A related is the Index Object, which is returned by some of the methods of the Search object.

Search Object Properties

available

Type: Boolean Access: R

This property is true if the Search plug-in is loaded and query capabilities are possible. A
script author should check this boolean before performing a query or other search object
manipulation.

Example:
// Make sure the search object exists and is available.

if (typeof search != "undefined" && search.available) {

search.query("Cucumber");

}

indexes

Type: Array Access: R

This property returns an array of all of the Index Objects currently accessible by the search
engine.

Example:
// Enumerate all of the indexes and dump their names

for (var i = 0; i < search.indexes.length; i++) {

console.println("Index[" + i + "]=", search.indexes[i].name);

}

matchCase

Type: Boolean Access: R/W

This property indicates whether or not the search query is case sensitive. The default is false.

5.0

Acrobat JavaScript Object Specification 214

maxDocs

Type: Integer Access: R/W

This property indicates the maximum number of documents that will be returned as part of the
search query. The default is 100 documents.

proximity

Type: Boolean Access: R/W

This property indicates whether or not the search query will reflect the proximity of words in
the results ranking when performing the search that contains AND boolean clauses. The default
is false. Please see the sections in the Acrobat Online Guide pertaining to Search capabilities
for a more thorough discussion of proximity.

refine

Type: Boolean Access: R/W

This property indicates whether or not the search query will take the results of the previous
query and refine the results based on the next query. The default is false. Please see the
sections in the Acrobat Online Guide pertaining to Search capabilities for a more thorough
discussion of refining queries.

soundex

Type: Boolean Access: R/W

This property indicates whether or not the search query will take the sound of words (e.g.
MacMillan, McMillan, McMilon) into account when performing the search. The default is
false. Please see the sections in the Acrobat Online Guide pertaining to Search capabilities for
a more thorough discussion of soundex.

stem

Type: Boolean Access: R/W

This property indicates whether or not the search query will take the stemming of words (e.g.
run, runs, running) into account when performing the search. The default is false. Please see
the sections in the Acrobat Online Guide pertaining to Search capabilities for a more thorough
discussion of stemming.

Acrobat JavaScript Object Specification 215

thesaurus

Type: Boolean Access: R/W

This property indicates whether or not the search query will find similar words. For example,
searching for "embellish" might yield "enhanced", "gracefully", or "beautiful". The default is
false. Please see the sections in the Acrobat Online Guide pertaining to Search capabilities for
a more thorough discussion of the thesaurus option.

Search Object Methods

addIndex

Parameters: cDIPath, [bSelect]
Returns: Index object

This method adds the index referred to by the path to the list of searchable indexes.

cDIPath specifies a device independent path to an index file on the user’s hard drive. See “File
Specification Strings”, Section 3.10.1, in the PDF Reference for the exact syntax of the path.

The optional parameter bSelect indicates whether the index should be selected for searching.

// Adds the standard help index for Acrobat to the index list:

search.addIndex("/c/program files/adobe/acrobat 5.0/help/exchhelp.pdx", true);

getIndexForPath

Parameters: cDIPath
Returns: Index object

Searchs the index list and returns the Index Object whose path corresponds to the specified path.

cDIPath specifies a device independent path to an index file on the user’s hard drive. See “File
Specification Strings”, Section 3.10.1, in the PDF Reference for the exact syntax of the path.

query

Parameters: cQuery
Returns: Number

This method asks the Search engine to search the list of indexes for the text specified in
cQuery. It returns the number of documents found by the search. Note that the properties
associated with the Search object (i.e. stem, soundex, thesaurus, proximity, refine, maxDocs)
may affect the results.

5.0 �

Acrobat JavaScript Object Specification 216

Example:
var nDocs = search.query("Acrobat");

app.alert("You found " + nDocs + " documents that match your query.");

removeIndex

Parameters: index
Returns: Nothing

This method removes the Index Object, index, from the index list.

5.0 �

Acrobat JavaScript Object Specification 217

Security Object

The security object is a static JavaScript object which encapsulates the encryption and digital
signature capabilities of Acrobat.

Security �: The methods and properties of the Security Object can only be executed
during batch, console, menu, or application initialization events. See the
Event Object for a discussion of Acrobat JavaScript events.

Security Object Properties

handlers

Type: Array Access: R

Returns an array containing the language independent names of the available signature
handlers. See also the getHandler method.

validateSignaturesOnOpen

Type: boolean Access: R/W

Gets or sets the user level preference that validates signatures when a document is opened.

Security Object Methods

getHandler

Parameters: cName, [bUIEngine]
Returns: Sig Object

Returns the signature handler object specified by cName. If the signature handler is not present
then a null object is returned. See also the handlers property.

The second optional parameter, bUIEngine, is boolean that defaults to false, if not present. If
true then getHandler returns the existing signature handler engine that is also hooked up to the
UI (eg can login via UI). If false (default) then returns a new engine. The caller can create as
many new engines as desired and each call to getHandler will create a new engine; however,
there is only one UI engine

5.0 � �

5.0 �

Acrobat JavaScript Object Specification 218

Example: This code selects the PPKLite Signature Handler Object
// validate signatures on open

security.validateSignaturesOnOpen = true;

// list all available signature handlers

var a = security.handlers;

for (var i = 0; i < a.length; i++)

 console.println("a["+i+"] = "+a[i]);

// use "Adobe.PPKLite" handler engine for the UI

var ppklite = security.getHandler("Adobe.PPKLite", true);

// login

ppklite.login("dps017", "/C/signatures/DPSmith.apf");

See also the example following signatureSign for a continuation of this example.

Acrobat JavaScript Object Specification 219

Sound Object

The Sound object is the representation of a sound that is stored in the document. The array of
all sound objects can be obtained from the Doc.sounds property.

See also the getSound, importSound, and deleteSound methods of the Doc Object.

Sound Object Properties

name

Type: String Access: R

This property is the name associated with this sound object.

Example:
console.println("Dumping all sound objects in this document.");

var s = this.sounds;

for (var i = 0; i < this.sounds.length; i++)

console.println("Sound[" + i + "]=" + s[i].name);

Sound Object Methods

play

Parameters: None
Returns: Nothing

This method plays the sound asynchronously.

pause

Parameters: None
Returns: Nothing

This method pauses the currently playing sound. If the sound is already paused then the sound
play is resumed.

stop

Parameters: None
Returns: Nothing

This method stops the currently playing sound.

5.0

Acrobat JavaScript Object Specification 220

Spell Object

The JavaScript Spell object allows users to check the spelling of form and annotation text
fields and other spelling domains. To be able to use the Spell object, the user must have
installed the Acrobat Spelling plug-in and the spelling dictionaries.

Spell Object Properties

available

Type: Boolean Access: R

This property is true if the Spell object is available.

Example:
console.println("Spell checking available: " + spell.available);

dictionaryNames

Type: Array Access: R

This property returns the array of available dictionary names. A subset of this array can be passed to the
check, checkText, and checkWord methods, and to the Doc.spellDictionaryOrder property to force the
use of a specific dictionary or dictionaries and the order they should be searched.

Depending on the user’s installation, valid dictionary names can include "English USA",
"German Traditional", "French", "Spanish", "Italian", "English UK", "Swedish", "Danish",
"Norwegian", "Dutch", "Portuguese", "Portuguese Brazilian", "French Canadian", "German
Swiss", "Norwegian Nynorsk", "Finnish", "Catalan", "Russian", "Ukrainian", "Czech",
"Polish", "English UK Legal", "English UK Medical", "German Reformed", "German Old
Swiss", "English USA Legal", "English USA Medical", "English USA Sci/Tech", and "English
USA Geo/Bio".

dictionaryOrder

Type: Array Access: R

5.0 �

5.0 �

5.0 �

5.0 �

Acrobat JavaScript Object Specification 221

This property returns the dictionary array search order specified by the user on the Spelling Preferences
panel. The Spelling plug-in will search for words first in the Doc.spellDictionaryOrder array if it has
been set for the document, and then it will search this array of dictionaries.

domainNames

Type: Array Access: R

This property returns the array of spelling domains that have been registered with the Spelling
plug-in by other plug-ins. A subset of this array can be passed to the check method to limit the
scope of the spell check.

Depending on the user's installation, valid domains can include "Everything", "Form Field",
"All Form Fields", "Comment", "All Comments".

Spell Object Methods

addDictionary

Parameters: cFile, cName, [bShow]
Returns: Boolean

Use this method to add a dictionary to the list of available dictionaries. The required cFile
parameter is the device independent path to the dictionary files.

The required cName parameter will be the dictionary name used in the spelling dialog and can be
used as the input parameter to the check, checkText, and checkWord methods.

When the optional bShow paramenter is true, the default, Spelling will combine the cName parameter
with "User: " and show that name in all lists and menus. For example if cName is "Test", Spelling will
add "User: Test" to all lists and menus. When bShow is false, Spelling will not show this custom
dictionary in any lists or menus.

The addDictionary method returns true on success, false, otherwise

A dictionary actually consists of four files: DDDxxxxx.hyp, DDDxxxxx.lex, DDDxxxxx.clx, and
DDDxxxxx.env. The cFile parameter must be the device independent path of the .hyp file. For example,
"/c/temp/testdict/TST.hyp". Spelling will look in the parent directory of the TST.hyp file for the other
three files. All four file names must start with the same unique 3 characters to associate them with each
other, and they must end with the dot three extensions listed above, even on a Macintosh.

Example
/* Get dictionary path and name from the user */

var dictPath = this.getField("dictPath");

5.0 �

5.0 � �

Acrobat JavaScript Object Specification 222

var dictName = this.getField("dictName");

/* now add this dictionary, if possible */

if (spell.available) {

spell.addDictionary(dictPath.value, dictName.value);

}

addWord

Parameters: cWord, cName
Returns: Boolean

Use this method to add a new word, cWord, to a dictionary. If successful it returns true,
otherwise, false.

The required cName parameter is the dictionary name. An array of the currently installed
dictionaries can be obtained using the dictionaryNames method.

See also the removeWord method.

Note: Internally the Spell Check Object will scan the user "Not-A-Word" dictionary
and remove the word if it is listed there. Otherwise, the word is added to the
user dictionary. The actual dictionary is not modified.

check

Parameters: [aDomain], [aDictionary]
Returns: Boolean

This method presents the Spelling dialog to allow the user to correct misspelled words in form
fields, annotations, or other objects. This method returns true if the user changed or ignored
all of the flagged words. When the user dismisses the dialog before checking everything the
method returns false.

The optional aDomain parameter is an array of document objects that should be checked by the
Spelling plug-in, for example form fields or comments. When you do not supply an array of
domains the "EveryThing" domain will be used. An array of the domains that have been
registered can be obtained using the domainNames method.

5.0 � �

5.0 �

Acrobat JavaScript Object Specification 223

The optional aDictionary parameter is the array of dictionary names that the spell checker should use.
The order of the dictionaries in the array is the order the spell checker will use to check for misspelled
words. An array of the currently installed dictionaries can be obtained using the dictionaryNames
method. When this parameter is omitted the Doc.spellDictionaryOrder list will be searched followed by
the spell.dictionaryOrder list.

Example:
var dictionaries = ["English USA Medical", "English USA"];

var domains = ["All Form Fields", "All Annotations"];

if (spell.check(domains, dictionaries))

console.println("You get an A for spelling.");

else

console.println("Please spell check this form before you submit.");

checkText

Parameters: cText, [aDictionary]
Returns: String

This method presents the spelling dialog to allow the user to correct misspelled words in the
string cText. This method returns the result from the spelling dialog in a new string.

The optional aDictionary parameter is the array of dictionary names that the spell checker
should use. The order of the dictionaries in the array is the order the spell checker will use to
check for misspelled words. An array of the currently installed dictionaries can be obtained
using the dictionaryNames method. When this parameter is omitted the Doc.spellDictionaryOrder list
will be searched followed by the spell.dictionaryOrder list.

Example:
var f = this.getField("Text Box") /* a form text box */

f.value = spell.checkText(f.value); /* let the user pick the dictionary */

checkWord

Parameters: cWord, [aDictionary]
Returns: null | Array

This method checks the spelling of a word, cWord. If the word is correct a null object is
returned, otherwise an array of alternative spellings for the unknown word is returned.

The optional aDictionary parameter is the array of dictionary names that Acrobat should use.
The order of the dictionaries in the array is the order Acrobat will use to check for misspelled

5.0 �

5.0 �

Acrobat JavaScript Object Specification 224

words. An array of the currently installed dictionaries can be obtained using the
dictionaryNames method. When this parameter is omitted the Doc.spellDictionaryOrder list will be
searched followed by the spell.dictionaryOrder list.

Example:
var word = "subpinna"; /* misspelling of "subpoena" */

var dictionaries = ["English USA Legal", "English USA"];

var f = this.getField("Alternatives") /* alternative spellings listbox */

f.clearItems();

f.setItems(spell.checkWord(word, dictionaries));

Example: The following script goes through the document and marks with a squiggle annot any
misspelled word. The contents of the squiggle annot contains the suggested alternative
spellings. The script can be executed from the console, as a mouse up action within the
document, or as a batch sequence.

var ckWord, numWords;

for (var i = 0; i < this.numPages; i++)

{

 numWords = this.getPageNumWords(i);

 for (var j = 0; j < numWords; j++)

 {

 ckWord = spell.checkWord(this.getPageNthWord(i, j))

 if (ckWord != null)

 {

this.addAnnot({

 page: i,

 type: "Squiggly",

 quads: this.getPageNthWordQuads(i, j),

 author: "A. C. Acrobat",

 contents: ckWord.toString()

 });

 }

 }

}

removeDictionary

Parameters: cName
Returns: Boolean

This method will remove a user dictionary that was added via addDictionary. cName must be the same
name as was used with addDictionary.

5.0 � �

Acrobat JavaScript Object Specification 225

The removeDictionary method returns true on success, false, otherwise

removeWord

Parameters: cWord, cName
Returns: Boolean

Use this method to remove the word cWord from a dictionary. If successful it returns true,
otherwise, false.

The required cName parameter is the dictionary name. An array of the currently installed
dictionaries can be obtained using the dictionaryNames method.

See also the addWord method.

Note: Internally the SpellCheck Object will scan the user dictionary and remove
the previously added word if it is there. Otherwise the word will be added to
the user’s "Not-A-Word" dictionary. The actual dictionary is not modified.

userWords

Parameters: cName, bAdded
Returns: Array

This method returns the array of words a user has added or removed from a dictionary. See
also the addWord and checkWord methods.

The required cName parameter is the dictionary name. An array of the currently installed
dictionaries can be obtained using the dictionaryNames property.

The required bAdded parameter indicates which of the two arrays should be returned. When
true, the user’s array of added words are returned. When false, the user’s array of removed
words are returned.

5.0 � �

5.0 � �

Acrobat JavaScript Object Specification 226

Statement Object

Statement objects are the heart of ADBC. Through Statement objects, one can execute SQL
updates and queries, and retrieve the results of these operations. Statement objects can be
created through calls to newStatement.

Note: NOTE: once a column is retrieved with any of the methods below, any future
calls attempting to retrieve the same column may fail!

Statement properties

columnCount

Type: Number Access: R

The columnCount property is the number of columns in each row of results returned by a
query. It is undefined in the case of an update operation.

rowCount

Type: Number Access: R

The rowCount property is the number of rows affected by an update. It is not the number of
rows returned by a query. Its value is undefined in the context of a query.

Statement methods

execute

Parameters: cSQL
Returns: Boolean

The execute method executes an SQL statement through the context of the Statement object. It
returns true on success and false on failure.

Example:
statement.execute("Select * from ClientData");

/* if the name of the database table or column name contains spaces, they

need to be enclosed in escaped quotes. */

statement.execute("Select firstname, lastname, ssn from \"Employee Info\"");

statement.execute("Select \"First Name\" from \"Client Data\"");

5.0 �

Acrobat JavaScript Object Specification 227

/* A cleaner solution would be to enclose the whole SQL string with single

quotes, then table names and column names can be enclosed with double

quotes. */

statement.execute(' Select "First Name","Second Name" from "Client Data" ');

See the getRow and nextRow methods for extensive examples.

Note: There is no guarantee that a client can do anything on a statement if an
execute has neither failed nor returned all of its data.

getColumn

Parameters: nColumn, [nDesiredType]
Returns: column object | null

The getColumn method returns a Column Object representing the data in the column identified
by the nColumn parameter. The nColumn parameter may be either a number, in which case it
returns a Column object based on its number, or a string in which case the method returns a
Column object based on the name of the column. The optional nDesiredType parameter can be
used to specify what JavaScript Type best represents the data in the column. The getColumn
method will return null on failure.

The properties of the Column Object are listed in the table below.

Column Object
The Column object is a generic object that contains the data from every row in a column. Column
objects can be obtain through calls to getColumn or getColumnArray.

Property Type Access Description

columnNum number R The number identifying the column in the Statement from
which the Column was retrieved.

name string R The name of the column. It is similar to the name
property of the ColumnInfo Object.

type number R The SQL Type of the data in the column. It is similar to
the type property of the ColumnInfo Object.

typeName string R The name of the type of data the column contains. It is
similar to the typeName property of the ColumnInfo
Object.

value various R/W The value of the data in the column in whatever format
the data was originally retrieved in.

Acrobat JavaScript Object Specification 228

getColumnArray

Parameters: None
Returns: An array of column objects | null

The getColumnArray method returns an array of Column Objects, one for each column in the
result set. A “best guess” is used to decide on the type that best represents which JavaScript
Type should be used to represent the data in the column. This method may return null on
failure as well as a zero-length array.

The properties of the Column Object are listed in the table following the getColumn method.

getRow

Parameters: None
Returns: A row object

The getRow method returns a Row Object representing the current row. This object contains
information from each column. Like getColumnArray, column data is captured in the “best
guess” format.

The table below, and the discussion that follows, identifies the properties of the Row Object.

In addition to the columnArray property, the Row Object has properties representing the column
of each column selected by the query.

Every Row object contains a property for each column in a row of data. Consider the following
example:

statement.execute("SELECT firstname, lastname, ssn FROM \"Employee Info\"");

statement.nextRow();

row = statement.getRow();

console.println("The first name of the first person retrieved is: "

+ row.firstname.value);

console.println("The last name of the first person retrieved is: "

+ row.lastname.value);

console.println("The ssn of the first person retrieved is: "+ row.ssn.value);

Row Object
The Row object is a generic object that contains the data from every column in a row. Row objects
are created through calls to getRow.

Property Type Access Description

columnArray array R The columnArray property is an array that is equivalent to
what getColumnArray would return if called on the
same Statement at the same time that the Row object
was created.

Acrobat JavaScript Object Specification 229

Example: If the column name contains spaces, then the above syntax for accessing the row
properties (E.g., row.firstname.value) does not work. Alternatively,

Connect = ADBC.newConnection("Test Database");

statement = Connect.newStatement();

statement.execute(' Select "First Name","Second Name" from "Client Data" ');

statement.nextRow();

// Populate this PDF file

this.getField("name.first").value = row["First Name"].value;

this.getField("name.last").value = row["Second Name"].value;

nextRow

Parameters: None
Returns: Nothing

The nextRow method obtains data about the next row of data generated by a previously
executed query. This must be called following a call to execute to acquire the first row of
results. This method throws an exception on failure (possibly because there is no next row).

Example: The following example is a rough outline of how to create a series of buttons and
Document Level JavaScripts to browse a database and populate a PDF form.

For the getNextRow button, defined below, the nextRow is used to retrieve the next row from
the database, unless there is an exception thrown (indicating that there is no next row), in
which case, we reconnect to the database, and use nextRow to retrieve the first row of data
(again).

/* Button Script */

// getConnected button

if (getConnected())

 populateForm(statement.getRow());

// a getNextRow button

try {

statement.nextRow();

}catch(e){

getConnected();

}

var row = statement.getRow();

populateForm(row);

/* Document Level JavaScript */

// getConnected() Doc Level JS

function getConnected()

Acrobat JavaScript Object Specification 230

{

 try {

ConnectADBCdemo = ADBC.newConnection("ADBCdemo");

if (ConnectADBCdemo == null)

throw "Could not connect";

statement = ConnectADBCdemo.newStatement();

if (statement == null)

throw "Could not execute newStatement";

if (statement.execute("Select * from ClientData"))

throw "Could not execute the requested SQL";

if (statement.nextRow())

throw "Could not obtain next row";

return true;

 } catch(e) {

app.alert(e);

return false;

 }

}

// populateForm()

/* Maps the row data from the database, to a corresponding text field in the

PDF file. */

function populateForm(row)

{

this.getField("firstname").value = row.FirstName.value;

this.getField("lastname").value = row.LastName.value;

this.getField("address").value = row.Address.value;

this.getField("city").value = row.City.value;

this.getField("state").value = row.State.value;

this.getField("zip").value = row.Zipcode.value;

this.getField("telephone").value = row.Telephone.value;

this.getField("income").value = row.Income.value;

}

Acrobat JavaScript Object Specification 231

Template Object
Template objects are named pages within the document. These pages may be hidden or visible
and can be copied or “spawned”. They are typically used to dynamically create content (e.g.
adding pages to an invoice on overflow).

Template Object Properties

hidden

Type: Boolean Access: R/W

This property indicates whether the template is hidden or not. Hidden templates cannot be seen
by the user until they are spawned or are made visible. When an invisible template is made
visible it is appended to the document.

See also the templates property, the createTemplate, getTemplate, and removeTemplate methods of
the Doc Object, and the Template Object.

Note: Although reading this property is valid, setting this property in Acrobat
Reader will generate an exception.

name

Type: String Access: R

This property returns the name of the template which was supplied when the template was
created.

See also the templates property, the createTemplate, getTemplate, and removeTemplate methods of
the Doc Object, and the Template Object.

Template Object Methods

spawn

Parameters: [nPage], [bRename], [bOverlay]
Returns: Nothing

5.0 � �

5.0

5.0 � �

Acrobat JavaScript Object Specification 232

Creates a new page in the document based on the template.

nPage represents the page number (zero-based) on which the template will be overlaid. The
default for nPage is zero.

bRename is a boolean that indicates whether form fields on the page should be renamed. The
default for bRename is true.

bOverlay is a boolean that indicates whether the template should be overlaid on the page or
whether is should be inserted as a new page before the specified page. The default for
bOverlay is true. To append a page to the document, set bOverlay to false and set nPage to the
number of pages in the document.

Example:
var a = this.templates;

for (i = 0; i < a.length; i++)

a[i].spawn(this.numPages, false, false);

This example spawns all templates and appends them one by one to the end of the document.

See also the templates property, the createTemplate, getTemplate, and removeTemplate methods of
the Doc Object, and the Template Object.

Acrobat JavaScript Object Specification 233

TTS Object

The JavaScript TTS object allows users to transform text into speech. To be able to use the
TTS object, the user’s machine must have a Text-To-Speech engine installed on it. The Text-
To-Speech engine will render text as digital audio and then “speak it”. It has been implemented
mostly with accessibility in mind but it could potentially have many other applications,
bringing to life PDF documents.

This is currently a Windows-only feature and requires that the MicroSoft Text to Speech
engine be installed in the operating system.

The Tts Object is present on both the Windows and Mac platforms (since it is a JavaScript
Object), it is disabled on the Mac, however.

Note: Acrobat 5.0 has taken a very different approach to providing accessibility
for disabled users by integrating directly with popular screen readers. Some
of the features and methods defined in 4.05 for the TTS object have been
deprecated as a result as they conflict with the screen reader. The TTS object
remains, however, as it still has useful functionality in its own right that
might be popular for multi-media documents.

TTS Properties

available

Type: Boolean Access: R

This property returns true if the TTS object is available and the Text-To-Speech engine can be
used.

console.println("Text to speech available: " + tts.available);

numSpeakers

Type: Integer Access: R

Returns the number of different speakers available to the current text to speech engine. See
also the speaker property and the getNthSpeakerName method.

pitch

Type: Integer Access: R/W

4.05

http://microsoft.com/msdownload/sapi/engine10.asp?submit9=Microsoft+Text-to-Speech+Engine+%28MSTTSA22L.EXE%29

Acrobat JavaScript Object Specification 234

This property sets the baseline pitch for the voice of a speaker. The valid range for pitch is
from 0 to 10, with 5 being the default for the mode.

soundCues

Type: Boolean Access: R/W

This property has been deprecated. It now returns only false.

speaker

Type: String Access: R/W

This property allows users to specify different speakers with different tone qualities when
performing text-to-speech. See also the numSpeakers property and the getNthSpeakerName
method.

speechCues

Type: Boolean Access: R/W

This property has been deprecated. It now returns only false.

speechRate

Type: Integer Access: R/W

This property sets the speed at which text will be spoken by the Text-To-Speech engine. The
value for speechRate is expressed in number of words per minute.

volume

Type: Integer Access: R/W

This property sets the volume for the speech. Valid values are from 0 (mute) to 10 (loudest).

�

�

Acrobat JavaScript Object Specification 235

TTS Methods

getNthSpeakerName

Parameters: nIndex
Returns: cName

Use this function to obtain the nth speaker name in the currently installed text to speech engine
(see also the numSpeakers and speaker properties).

Example:
// Enumerate through all of the speakers available.

for (var i = 0; i < tts.numSpeakers; i++) {

var cSpeaker = tts.getNthSpeakerName(i);

console.println("Speaker[" + i + "] = " + cSpeaker);

tts.speaker = cSpeaker;

tts.qText ("Hello");

tts.talk();

}

pause

Parameters: None
Returns: Nothing

This method immediately pauses text-to-speech output on a TTS object. Playback of the
remaining queued text can be resumed via the resume method.

qSilence

Parameters: nDuration
Returns: Nothing

This method queues a period of silence into the text. nDuration specifies the amount of silence
in milliseconds.

qSound

Parameters: cSound
Returns: Nothing

This method puts a sound into the queue in order to be performed by talk. It accepts one
parameter, cSound, from a list of possible sound cue names. These names map directly to
sound files stored in the SoundCues folder, if it exists.

tts.qSound("DocPrint"); // Plays DocPrint.wav

Acrobat JavaScript Object Specification 236

The SoundCues folder should exist at the program level for the viewer, e.g. C:\Program
Files\Adobe\Acrobat 5.0\SoundCues.

Note: Windows only--qSound can handle only 22KHz,16 bit PCM .wav files. These
should be at least one second long in order to avoid a queue delay problem
in MS SAPI. In case the sound lasts less than one second, it should be edited
and have a silence added to the end of it.

qText

Parameters: cText
Returns: Nothing

This method puts text into the queue in order to be performed by talk.

cText is the text to convert to speech.

tts.qText("Hello, how are you?");

reset

Parameters: None
Returns: Nothing

This method stops playback of current queued text and flushes the queue. Playback of text
cannot be resumed via the resume method. Additionally, it resets all the properties of the TTS
object to their default values.

resume

Parameters: None
Returns: Nothing

This method resumes playback of text on a paused TTS object.

stop

Parameters: None
Returns: Nothing

This method stops playback of current queued text and flushes the queue. Playback of text
cannot be resumed with the resume method.

Acrobat JavaScript Object Specification 237

talk

Parameters: None
Returns: Nothing

This method sends whatever is in the queue to be spoken by the Text-To-Speech engine. If text
output had been paused, talk resumes playback of the queued text.

tts.qText("Hello there!");

tts.talk();

Acrobat JavaScript Object Specification 238

this Object
In JavaScript the special keyword this refers to the current object. In Acrobat the current object
is defined as follows:

• In an object method, it is the object to which the method belongs.

• In a constructor function, it is the object being constructed.

• In a function defined in one of the Folder Level JavaScripts files, it is undefined. It is
recommended that calling functions pass the document object to any function at this
level that needs it.

• In a Document level script or Field level script it is the document object and
therefore can be used to set or get document properties and functions.

For example, assume that the following function was defined at the Plug-in folder level:

function PrintPageNum(doc)

{ /* Print the current page number to the console. */

console.println("Page=" + doc.page);

}

The following script outputs the current page number to the console (twice) and then prints the
page:

PrintPageNum(this); /* Must pass the document object. */

console.println("Page=" + this.pageNum); /* Same as the previous call. */

this.print(false, this.pageNum, this.pageNum); /* Prints the current page. */

Variable and Function Name Conflicts

Variables and functions that are defined in scripts are parented off of the this object. For
example:

var f = this.getField("Hello");

is equivalent to

this.f = this.getField("Hello");

with the exception that the variable f can be garbage collected at any time after the script is
run.

Acrobat JavaScript programmers should avoid using property and method names from the Doc
Object as variable names. Use of method names when after the reserved word "var" will throw
an exception, as the following line illustrates:

var getField = 1; // TypeError: redeclaration of function getField

Acrobat JavaScript Object Specification 239

Use of property names will not throw an exception, but the value of the property may not be
altered if the property refers to an object:

// "title" will return "1", but the document will now be named "1".

var title = 1;

// property not altered, info still an object

var info = 1; // "info" will return [object Info]

The following was taken from the example that follows the signatureInfo Object table and is an
example of avoiding variable name clash.

var f = this.getField("mySignature"); // uses the ppklite sig handler

// use "Info" rather than "info" to avoid a clash

var Info = f.signatureInfo();

// some standard signatureInfo properties

console.println("name = " + Info.name);

Acrobat JavaScript Object Specification 240

Util Object
The Util Object is a static JavaScript object that defines a number of utility methods and
convenience functions for string and date formatting and parsing.

Util Object Methods

printf

Parameters: cFormat, *
Returns: cResult

This method will format one or more values as a string according to a format string. This is
similar to the C function of the same name. This method converts and formats incoming
arguments into a result string (cResult) according to a format string (cFormat). The format
string consists of two types of objects: ordinary characters, which are copied to the result
string, and conversion specifications, each of which causes conversion and formatting of the
next successive argument to printf. Each conversion specification is constructed as follows:

%[,nDecSep][cFlags][nWidth][.nPrecision]cConvChar

cDecSep, preceded by a comma character (,), is a digit from 0 to 3 which indicates the decimal/
separator format:

0 - comma separated, period decimal point.

1 - no separator, period decimal point.

2 - period separated, comma decimal point.

3 - no separator, comma decimal point.

cFlags is only valid for numeric conversions and consists of a number of characters (in any
order), which will modify the specification:

+ - specifies that the number will always be formatted with a sign.

space - if the first character is not a sign, a space will be prefixed.

0 - specifies padding to the field with with leading zeros.

- which specifies an alternate output form. For f the output will always have a
decimal point.

nWidth is a number specifying a minimum field width. The converted argument will be
formatted in so that it is at least this many characters wide, including the sign and decimal
point, and may be wider if necessary. If the converted argument has fewer characters than the
field width it will be padded on the left to make up the field width. The padding character is
normally a space, but is 0 if zero padding flag is present.

Acrobat JavaScript Object Specification 241

nPrecision, preceded by a period character (.), is a number which specifies the number of
digits after the decimal point for float conversions.

cConvChar is one of:

d - integer, interpret the argument as an integer (truncating if necessary).

f - float, interpret the argument as a number.

s - string, interpret the argument as a string.

x - hexadecimal, interpret the argument as an integer (truncating if necessary)
and format in unsigned hexadecimal notation.

Example:
var n = Math.PI * 100;

console.clear();

console.show();

console.println(util.printf("Decimal format: %d", n));

console.println(util.printf("Hex format: %x", n));

console.println(util.printf("Float format: %.2f", n));

console.println(util.printf("String format: %s", n));

Output:
Decimal format: 314

Hex format: 13A

Float format: 314.16

String format: 314.159265358979

printd

Parameters: cFormat, oDate
Returns: String

Use this method to format a date according to a format. cFormat be either a string or a number;
date must be a date object

Valid string format values for the cFormat parameter are as follows:

String Effect Example

mmmm Long month September

mmm Abbreviated month Sept

mm Numeric month with leading zero 09

m Numeric month without leading zero 9

dddd Long day Wednesday

Acrobat JavaScript Object Specification 242

To format the current date in long format, for example, you would use the following script:
var d = new Date();

console.println(util.printd("mmmm dd, yyyy", d));

A variety of addition "quick" formats are possible using numeric values.

Example:
// display date in a local format

var d = new Date();

console.println(util.printd(2, d));

ddd Abbreviated day Wed

dd Numeric date with leading zero 03

d Numeric date without leading zero 3

yyyy Long year 1997

yy Abbreviate Year 97

HH 24 hour time with leading zero 09

H 24 hour time without leading zero 9

hh 12 hour time with leading zero 09

h 12 hour time without leading zero 9

MM minutes with leading zero 08

M minutes without leading zero 8

ss seconds with leading zero 05

s seconds without leading zero 5

tt am/pm indication am

t single digit am/pm indication a

\ use as an escape character

5.0 Additions

Value Description Example

0 PDF date format D:20000801145605+07'00'

1 Universal 2000.08.01 14:56:05 +07'00'

2 Localized string 2000/08/01 14:56:05

String Effect Example

Acrobat JavaScript Object Specification 243

printx

Parameters: cFormat, [cSource]
Returns: String

This method formats a source string, cSource, according to a formatting string, cFormat. A
valid format is any string which may contain special masking characters:

To format a string as a U.S. telephone number, for example, use the following script:

var v = "aaa14159697489zzz";

v = util.printx("9 (999) 999-9999", v);

console.println(v);

scand

Parameters: cFormat, cDate
Returns: date object

This method converts the supplied date, cDate, into a JavaScript date object according to rules
of the supplied format string, cFormat. cFormat uses the same syntax as found in scand. This
routine is much more flexible than using the date constructor directly.

/* Turn the current date into a string. */

var cDate = util.printd("mm/dd/yyyy", new Date());

console.println("Today’s date: " + cDate);

/* Parse it back into a date. */

var d = util.scand("mm/dd/yyyy", cDate);

/* Output it in reverse order. */

Value Effect

? Copy next character.

X Copy next alphanumeric character, skipping any others.

A Copy next alpha character, skipping any others.

9 Copy next numeric character, skipping any others.

* Copy the rest of the source string from this point on.

\ Escape character.

> Uppercase translation until further notice.

< Lowercase translation until further notice.

= Preserve case until further notice (default).

4.0

Acrobat JavaScript Object Specification 244

console.println("Yet again: " + util.printd("yyyy mmm dd", d));

Note: Given a two digit year for input, scand resolves the ambiguity as follows: if
the year is less than 50 then it is assumed to be in the 21st century (i.e. add
2000), if it is greater than or equal to 50 then it is in the 20th century (add
1900). This heuristic is often known as the Date Horizon.

Acrobat JavaScript Object Specification 245

A Short Acrobat JavaScript FAQ1

Where can JavaScripts be found and how are they used?

JavaScripts work with Acrobat on a variety of levels: the folder level, document level, field
level and batch level. (See also the subsection entitled Where Can You Use JavaScript?) These
levels restrict the type of processing that can occur and are loaded at different times.

Folder Level JavaScripts

JavaScripts can be placed in individual files with the “.js” extension. For such files to be read
by the viewer at startup they need to be placed in either the Acrobat Application JavaScripts
folder or in the user’s JavaScripts folder. See App/Init for a discussion of the order these files
are loaded into the application on startup.

Variables and functions that might be generally useful to the application should be kept in
these folders. Note that some JavaScripts methods can only be executed from within one of
these JavaScript files at startup; e.g., App.addMenuItem and App.addSubMenu.

There are some restrictions when writing JavaScript files, particularly with respect to the use
of this Object.

The standard Acrobat JavaScript implementation comes with three JavaScript files: Aform.js
which contains built-in pre-canned functions, Annots.js which is used by the Annotations plug-
in and ADBC.js used by the ADBC plug-in. These are located in the application JavaScripts
folder.

The file glob.js is programmatically generated and contains cross-session application
preferences set using the global object’s setPersistent method.

If the file Config.js is present this file can be used to customize the look of the viewer by
removing toolbar buttons and menu items (see the application methods hideMenuItem and
hideToolbarButton).

1.Frequently Asked Questions

4.0 �

4.0

Acrobat JavaScript Object Specification 246

Document level

By using the Adobe Acrobat menu item Tools->JavaScript->Document JavaScripts…, the user
can add, modify, or delete document level scripts. These scripts should be function definitions
that are generally useful to the document but are not applicable outside the document.
Document level scripts are executed after the document has opened and after the plug-in level
scripts are loaded. Document level scripts are stored within the PDF document. Therefore, the
forms programmer should make every effort to package scripts as effectively as possible.

Field level

The user can add scripts to a form field definition using a dialog box in the form editing tool.
These scripts are executed as the events occur (e.g. mouse up or calculate). Scripts that are
field specific should be created at this level. Usually these scripts validate, format, or calculate
field values.

Unlike plug-in folder scripts, document level and field level scripts are stored within the PDF
document and therefore the forms programmer should make every effort to package his scripts
as effectively as possible (e.g. code reuse) at the various levels for performance and file size
reasons.

How should I name my form fields?

Form fields typically have names like FirstName, LastName, etc. This naming convention is
referred to as flat names. For many form applications, this flat hierarchy of names is sufficient
and works well. The problem with using flat names is that there is no association between the
fields.

Form field names can be more useful by creating a hierarchal structure. For example, if we
change FirstName to Name.First and LastName to Name.Last we form a tree of fields. The
period (‘.’) separator used in Acrobat Forms and denotes a hierarchy shift. The Name portion
of these fields is the parent, and First and Last become the children. While there is no limit to
the depth a hierarchical name can be constructed it is important that the hierarchy remain
manageable.

This hierarchy can be useful in a number of ways. It can speed up authoring and ease
manipulation of groups of fields in JavaScript. In addition, a form field hierarchy can improve
the performance of forms applications when there are many fields in the document.

Using our original flat names FirstName, MiddleName and LastName, imagine that we want to
change the background color of these fields to yellow (to indicate missing data, or emphasize
an important point). We would need two lines of JavaScript code for each field:

var name = this.getField("FirstName");

name.fillColor = color.yellow;

name = this.getField("MiddleName");

name.fillColor = color.yellow;

Acrobat JavaScript Object Specification 247

name = this.getField("LastName");

name.fillColor = color.yellow;

With our hierarchy of Name.First, Name.Middle and Name.Last above (and perhaps,
Name.Title if used), we can change the background color of these fields with just two lines of
code instead of six:

var name = this.getfield("Name");

name.fillColor = color.yellow

When using this hierarchy within a JavaScript, remember you can only change appearance
related properties of the parent field and that appearance changes propagate to all children.
You cannot change the field’s value. For example if you try the following script:

var name = this.getField("Name");

name.value = "Lincoln";

the script will fail. Name is considered a parent field. You can only change the value of
terminal fields (i.e. a field that does not have children like Last or First). The following script
executes correctly:

var first = this.getField("Name.First");

var last = this.getField("Name.Last");

first.value = "Abraham";

last.value = "Lincoln";

How do I use date objects?
This section discusses the use of Date objects within Acrobat. The reader should be familiar
with the JavaScript Date object and the Util Object functions that process dates. JavaScript Date
objects are actually an object containing both a date and time. All references to date in this
section refer to the date-time combination.

Note: All date manipulations in JavaScript, including those methods that have
been documented in this specification are Year 2000 (Y2K) compliant.

Tip: When using the Date object, do not use the getYear() method which returns
the current year - 1900. Instead use the getFullYear() method which always
returns a four digit year.

Acrobat JavaScript Object Specification 248

Converting from a Date to a String

Acrobat Forms provides several date related methods in addition to the ones provided by the
JavaScript Date object. These are the preferred methods of converting between Date objects
and strings. Because of Acrobat Forms' ability to handle dates in many formats, the Date object
does not always handle these conversions correctly.

To convert a Date object into a string, the scand method of the Util Object is used. Unlike the
built-in conversion of the Date object to a string, scand allows an exact specification of how the
date should be formatted.

/* Example of util.printd */

var d = new Date(); /* Create a Date object containing the current date. */

/* Create some strings from the Date object with various formats with

** util.printd */

var s = ["mm/dd/yy", "yy/m/d", "mmmm dd, yyyy", "dd-mmm-yyyy"];

for (var i = 0; i < s.length; i++) {

/* print these strings to the console */

console.println("Format " + s[i] + " looks like: " + util.printd(s[i], d));

}

The output of this script would look like:

Format mm/dd/yy looks like: 01/15/99

Format yy/mm/dd looks like: 99/1/15

Format mmmm dd, yyyy looks like: January 15, 1999

Format dd-mmm-yyyy looks like: 15-Jan-1999

Tip: Given the ever increasing length of the human lifespan and the lessons we’ve
learned from Y2K coding issues, it is advised that you output dates with a
four digit year to avoid ambiguity.

Converting from a string to a date

To convert a string into a Date object the scand method of the Util Object is used. It accepts a
format string that it uses as a hint as to the order of the year, month, and day in the input
string.

/* Example of util.scand */

/* Create some strings containing the same date in differing formats. */

var s1 = "03/12/97";

var s2 = "80/06/01";

var s3 = "December 6, 1948";

var s4 = "Saturday 04/11/76";

var s5 = "Tue. 02/01/30";

Acrobat JavaScript Object Specification 249

var s6 = "Friday, Jan. the 15th, 1999";

/* Convert the strings into Date objects using util.scand */

var d1 = util.scand("mm/dd/yy", s1);

var d2 = util.scand("yy/mm/dd", s2);

var d3 = util.scand("mmmm dd, yyyy", s3);

var d4 = util.scand("mm/dd/yy", s4);

var d5 = util.scand("yy/mm/dd", s5);

var d6 = util.scand("mmmm dd, yyyy", s6);

/* Print the dates to the console using util.printd */

console.println(util.printd("mm/dd/yyyy", d1));

console.println(util.printd("mm/dd/yyyy", d2));

console.println(util.printd("mm/dd/yyyy", d3));

console.println(util.printd("mm/dd/yyyy", d4));

console.println(util.printd("mm/dd/yyyy", d5));

console.println(util.printd("mm/dd/yyyy", d6));

The output of this script would look like:

03/12/1997

06/01/1980

12/06/1948

04/11/1976

01/30/2002

01/15/1999

Unlike the date constructor (new Date(...)), scand is rather forgiving in terms of the string
passed to it.

Note: Given a two digit year for input, scand resolves the ambiguity as follows: if
the year is less than 50 then it is assumed to be in the 21st century (i.e. add
2000), if it is greater than or equal to 50 then it is in the 20th century (add
1900). This heuristic is often known as the Date Horizon.

Date arithmetic

It is often useful to do arithmetic on dates to determine things like the time interval between
two dates or what the date will be several days or weeks in the future. The JavaScript Date
object provides several ways to do this. The simplest and possibly most easily understood
method is by manipulating dates in terms of their numeric representation. Internally, JavaScript
dates are stored as the number of milliseconds (one thousand milliseconds is one whole
second) since a fixed date and time. This number can be retrieved through the valueOf method
of the Date object. The Date constructor allows the construction of a new date from this
number.

Acrobat JavaScript Object Specification 250

/* Example of date arithmetic. */

/* Create a Date object with a definite date. */

var d1 = util.scand("mm/dd/yy", "4/11/76");

/* Create a date object containing the current date. */

var d2 = new Date();

/* Number of seconds difference. */

var diff = (d2.valueOf() - d1.valueOf()) / 1000;

/* Print some interesting stuff to the console. */

console.println("It has been " + diff + " seconds since 4/11/1976");

console.println("It has been " + diff / 60 + " minutes since 4/11/1976");

console.println("It has been " + (diff / 60) / 60 + " hours since 4/11/1976");

console.println("It has been " +

((diff / 60) / 60) / 24 + " days since 4/11/1976");

console.println("It has been " +

(((diff / 60) / 60) / 24) / 365 + " years since 4/11/1976");

The output of this script would look something like:

It has been 718329600 seconds since 4/11/1976

It has been 11972160 minutes since 4/11/1976

It has been 199536 hours since 4/11/1976

It has been 8314 days since 4/11/1976

It has been 22.7780821917808 years since 4/11/1976

The following example shows the addition of dates.

/* Example of date arithmetic. */

/* Create a date object containing the current date. */

var d1 = new Date();

/* num contains the numeric representation of the current date. */

var num = d1.valueOf();

/* Add thirteen days to today’s date. */

/* 1000 ms / sec; 60 sec / min; 60 min / hour; 24 hours / day; 13 days */

num += 1000 * 60 * 60 * 24 * 13;

/* Create our new date that is 13 days ahead of the current date. */

var d2 = new Date(num);

/* Print out the current date and our new date using util.printd */

console.println("It is currently: " + util.printd("mm/dd/yyyy", d1));

console.println("In 13 days, it will be: " + util.printd("mm/dd/yyyy", d2));

The output of this script would look something like:

It is currently: 01/15/1999

In 13 days, it will be: 01/28/1999

Acrobat JavaScript Object Specification 251

How can I make my document secure?
Security in Acrobat takes on the form of restricting access to a document, restricting
permissions for a form once it has been opened, and digital signatures.

Restricting Access to the Document

If the author desires to restrict access to the form in its entirety then the standard security
model in Acrobat can be selected and an open password defined that requires a user to type in a
password before opening the form. Other security handlers exist and are provided by third
party developers as plug-ins and may also be useful. E.g. using a public/private key
infrastructure to lock a form for a particular set of people or allowing a form to expire after a
certain time period.

The ability to set a user password is accessed by choosing File > Document Security... from
the Acrobat menu, then from the drop-down menu entitled “Document Secured with:”, by
choosing the appropriate security handler, Acrobat Standard Security, for example. You can
now set the password and permissions as desired.

Restricting Permissions

The standard security model in Acrobat is accessible at document save time and allows you to
set the following restrictions on the document: printing, changing the document, selecting text
and graphics, and adding and changing annotations and form fields.

Once a form has been authored it is
often useful to lock the form so
that it may be filled in but cannot
be tampered with using the forms
tool. For example, after authoring a
form may be posted on a Web site.
In order to preserve the form
integrity it needs to be shielded
from any changes to its formulae or
internal data routines.

If the No Changing the Document
restriction is selected, the user can
fill-in form fields and add
annotations but cannot author or
modify form fields or change the
background text using the TouchUp
plug-in.

In addition, once a form has been
filled in, it is often desirable to lock the entire document so that it cannot be changed

Acrobat JavaScript Object Specification 252

whatsoever. In filling out a tax or other sensitive form, the user may wish to save the document
so that no further changes to the document are allowed. In order to disallow both fill-in and
authoring, the No Changing the Document and No Adding or Changing Annotations and Form
Fields restrictions must be selected.

Digital Signatures

Although these form fields do not restrict access or permissions, they do allow an author or
user to verify that a document has not been changed after a signature has been applied.

An author may digitally sign a form thus signifying that it has been released for fill-in. A user
can verify the signature to make sure that the form has not been tampered with and is thus
“official”. A blind signature (signed without any appearance) is often useful in this situation
and can be created via the pull right menu in the signatures pane.

After fill-in a user can also sign the document either by using the signing tool or filling in a
pre-authored signature field, thus ensuring that the form undergoes no further changes without
detection.

Also, see the section on the signature field for a discussion on how to create and sign a digital
signature field programmatically.

How can I lock a document after a signature field has been signed?

Signature fields allow the user to digitally sign a document. Once a signature is applied to the
document any subsequent changes to the document will cause the signature to indicate that the
“Document has been changed after signing”.

A signature field’s value is read-only. An unsigned signature has a null value. Once the field
has been signed its value is non-null.

When crafting a custom script for when the signature field is signed remember to allow for
resetting the form (i.e. the field’s value is set to null). For example, imagine a form where
upon signing a signature field that all fields whose names starts with “A” are locked and all
fields whose names start with “B” are locked. We might start with a script fragment, to be
executed at signature time, looking something like this:

/* This example is incorrect. */

var f = this.getField("A");

/* Lock all A fields. */

f.readOnly = true;

f = this.getField("B");

/* Unlock all B fields. */

f.readOnly = false;

4.0

Acrobat JavaScript Object Specification 253

This is a typical operation for many forms. This script is incorrect and when the form is reset
it will lock and unlock the wrong fields. Instead, it should check the value of the signing event
and react accordingly:

var bLock = (event.value != "");

var f = this.getField("A");

/* Lock A on sign, unlock on reset. */

f.readOnly = bLock;

f = this.getField("B");

/* Unlock B on sign, lock on reset. */

f.readOnly = !bLock;

There is a convenience routine available for your use called AFSignatureLock() in AForm.js
(see Where can JavaScripts be found and how are they used?) that performs the programmatic
equivalent of the simple locking user interface in the signature properties dialog. This allows
you to easily lock and unlock all fields, a particular list of fields, or all fields but those
specified. The example is re-coded using this convenience routine below:

var bLock = (event.value != "");

AFSignatureLock(this, "THESE", "A", bLock);

AFSignatureLock(this, "THESE", "B", !bLock);

See the comments in AForm.js for more details.

How can I make my documents accessible?

Accessibility of electronic information is an ever-increasingly important issue. Creating forms
that adhere to the accessibility tips below will make your forms more easily usable by all users.
The 4.05 release of Acrobat is intended to allow motion and vision impaired users to fill out
Acrobat Forms. Future versions of Acrobat will be more fully speech-enabled.

The following is a set of guidelines which must be followed in order to make a form minimally
accessible given the default behavior of Acrobat 4.05.

Document Meta-Data

The meta-data for a document can be specified using the File->Document Info->General
dialog.

When a document is opened, saved, printed, or closed, the document title is spoken to the user.
If the title has not been specified then the filename is used. Often, file names are abbreviated
or changed and as such it is highly encouraged that the document author specify a title for the
document. For example, if a document has a file name of “IRS1040.pdf” a good document title
would be “Form 1040: U.S. Individual Income Tax Return for 1998”.

4.05

Acrobat JavaScript Object Specification 254

Filling all of the additional meta-data associated with a document (Author, Subject, Keywords)
also makes it more easily searchable using Acrobat Search and Internet search engines.

Short Description

If a field name is not user friendly, it must contain a user name (short description) that is user
friendly if the field is likely to be interacted with (i.e. it is not a read-only or hidden field).
This name is spoken when a user acquires the focus to that field and should give an indication
of the field’s purpose. For example, if a field is named “name.first” a good short description
would be “First Name”. This description is also displayed as a “tooltip” when the user
positions his mouse over the field making working with the form a more productive
experience.

Setting tab order

In order to traverse the document in a reasonable manner, the tab order for the fields must be
set in a logical way. This is important as most users use the tab key to move through the
document. For visually impaired users this is a necessity as they cannot rely on mouse
movements or visual cues.

Use the TTS object

In cases that the default behavior of Acrobat with respect to forms is insufficient to give
context or indication of the current state of the form fields in the document, the author is
encouraged to make use of the TTS Object to supplement that behavior.

Default Behavior

The default behavior of Acrobat 4.05 with respect to accessibility is as follows:

1. Tab key: pressing the tab (shift-tab) key when there is no form field that has the keyboard
focus will cause the first (last) field in the tab order on the current page to become active.
If there are no form fields on the page then Acrobat will inform the user of this via a
speech cue.

Using tab (shift-tab) while a field has the focus tabs forward (backward) in the tab order to
the next (previous) field. If the field is the last (first) field on the page and the tab (shift-
tab) key is pressed, the focus is set to the first (last) field on the next (previous) page if
one exists. If such a field does not exist, then the focus “loops” to the first (last) field on
the current page.

2. Sound Cues: sound cues are user-configurable sounds that play when certain events occur
and give the user an indication of context. The following actions have sound cues attached
to them:

Acrobat JavaScript Object Specification 255

• Document open, close, activate, save, print

• Page turn

• Keystroke handling when interacting with a field

3. Speech cues: speech cues are user configurable strings that are spoken by the text to
speech engine to give the disabled user an indication of context. The following actions
have speech cues attached to them:

• Application initialize

• Document open, close, activate, save, print

• Page turn

• Field focus, blur

• Alert dialogs

• Keystroke handling when interacting with a field.

How can I define globals in JavaScript?

The Acrobat extensions to JavaScript define a Global object to which you can attach global
variables as properties. To define a new global called 'myVariable' and set it equal to the null
string, you would type:

global.myVariable = "";

All of your scripts, no matter where they are in a document, will now be able to reference this
variable.

Making Globals Persistent

Global data does not persist across user sessions unless you specifically make your globals
persistent. The predefined Global object has a method designed to do this. To make a variable
named 'myVariable' persist across sessions, do this:

global.setPersistent("myVariable",true);

In future sessions, the variable will still exist (with its previous value intact).

How can I send form data to an e-mail address?

You can use the submitForm method of the Field Object to accomplish this:

var url = "mailto:johndoe@doe.net";

Acrobat JavaScript Object Specification 256

this.submitForm(url,false);

In this instance, the form contents will be sent to the address given in the variable url. The
second argument of submitForm() determines whether the form contents are sent as url-
encoded data using the POST method, or sent as FDF (Forms Data Format). A value of "false"
means the data will be sent in url-encoded fashion.

How can I hide a field based on the value of another?

Use the display property of the Field object.

var title = this.getField("title");

if (this.getField("showTitle").value == "Off")

 title.display = display.hidden;

else

 title.display = display.visible;

How can I query a field value in another open form from the form I'm working
on?

One way would be to use the Global Object's subscribe method to make the field(s) of interest
available to others at runtime. For example, a form could contain a document-level script
(invoked when that document is first opened) that defines a global field value of interest:

function PublishValue(xyzForm_fieldValue_of_interest) {

global.xyz_value = xyzForm_fieldValue_of_interest;

}

Then, when your document (Document A) wants to access the value of interest from the other
form (Document B), it can subscribe to the variable in question:

global.subscribe("xyz_value", ValueUpdate);

In this case, ValueUpdate refers to a user-defined function that gets called automatically
whenever xyz_value changes. If you were using xyz_value in Document A as part of a field
called MyField, you might define the callback function this way:

function ValueUpdate(newValue) {

this.getField("MyField").value = newValue;}

How can I intercept keystrokes one by one as they occur?

Create a Custom Keystroke Filter script (see the Format tab in the Field Properties dialog for
any text or combo box field) in which you examine the value of event.change. By altering this
value, you can alter the user's input as it takes place.

Acrobat JavaScript Object Specification 257

How can I build a nested popup menu?

Use the app.popUpMenu() method. Create an array of menu selections, then call
app.popUpMenu(arrayName) from the mouse-down or mouse-up event of a given field to pop the
menu.

Example:
var cChoice = app.popUpMenu("one", "two", "-",

["three", "three.one", "three.two"]);

app.alert("You chose " + cChoice);

How can I construct my own colors?

Colors are Array objects in which the first item in the array is a string describing the color
space ('G' for grayscale, 'RGB' for RGB, 'CMYK' for CMYK) and the following items are
numeric values for the respective components of the color space. Hence:

color.blue = new Array("RGB", 0, 0, 1);

color.cyan = new Array("CMYK", 1, 0, 0, 0);

To make a custom color, just declare an array containing the color-space type and channel
values you want to use.

How can I prompt the user for a response in a dialog?

Use the response method defined in the The App object is a static JavaScript object that defines a
number of Acrobat specific functions plus a variety of utility routines and convenience functions. class.
This method displays a dialog box containing a question and an entry field for the user to reply
to the question. (Optionally, the dialog can have a title or a default value for the answer to the
question.) The return value is a string containing the user’s response. If the user presses the
dialog's Cancel button, the response is the null object.

var dialogTitle = "Please Confirm";

var defaultAnswer = "No.";

var reply = app.response("Did you really mean to type that?",

 dialogTitle, defaultAnswer);

How can I fetch an URL from JavaScript?

Use the getURL method of the Data Object class. This method retrieves the specified URL over
the internet using a GET. If the current document is being viewed inside the browser or
Acrobat Web Capture is not available, it uses the Weblink plug-in to retrieve the requested
URL.

Acrobat JavaScript Object Specification 258

How can I change the hot-help text for a field dynamically?

The userName property of the Field Object returns/sets the “short description” of the field in
question, as a string. This property is intended to be used as a tool tip or hot-help popup
whenever the mouse cursor loiters over a field. It can be a great help to the user if you put
useful suggestions (or descriptive language of some sort) in the userName property.

How can I change the zoom factor programmatically?

Use the zoom method of the Data Object class. For example, the following code shows two ways
to set the zoom factor of the current page:

// This zooms in to twice the current zoom level:

this.zoom *= 2;

// This sets the zoom to 73%:

this.zoom = 73;

How can I determine if the mouse has entered/left a certain area?

Create an invisible, read-only text field at the place where you want to detect mouse entry or
exit. Then attach JavaScripts to the mouse-enter and/or mouse-exit actions of the field.

What are Rotated User Space and Default User Space?

Two terms used frequently in this specification are rotated user space and default user space.
These two arise in connection with forms and annots, respectively. Forms always uses rotated
user space and annots always uses the default user space.

Rotated User Space

In rotated user space (which is a coordinate system), the origin (or reference point) is the lower
left-hand corner of the crop box, even if the page has been rotated. The positive x-axis points
to the right from the origin, the positive y-axis moves up from the origin. The length of one
unit along both the x and y axes is 1/72 inch.

Default User Space

Default user space is the coordinate system described in PDF Reference, page 126. For an
unrotated page, the origin is the lower left corner of the media box with the positive x-axis
extending horizontally to the right and the positive y-axes extending vertically upward. The
length of one unit along both the x and y axes is 1/72 inch. When the page is rotated, however,
the axis system is rotated as well, in which case, the x- and y- axes may have a different
orientation from the standard one just described.

Acrobat JavaScript Object Specification 259

Graphical Relationship

Below is a depiction of a page that has been cropped and rotated 90 degrees clockwise. In the
rotated user space, the origin is in the lower left-hand corner of the crop box, the axes are in
standard mathematical orientation. The origin for the default user space, in this case, is in the
upper left-hand corner, remembering the page has been rotated 90 degrees clockwise, with the
positive x-axis pointing downward, and the positive y-axis pointing to the right.

Annots and Forms elements having the same coordinates (bounding rectangles), will not
necessarily be located in identical places on the page. For example, if we execute

this.addField("myButton", "button", 0, [0,0,20,20])

and executed the script

this.addAnnot({ page: 0, type: "Square", rect: [0,0,20,20] });

we would get a button located in the lower left-hand corner of the crop box, and a "Square"
comment in the upper left-hand corner of the media box! This should always be kept in mind
when placing forms or annot objects on a page.

y

x
Default User System:
origin and axes

x

y Rotated User System:
origin and axes

Crop Box

Rotated media box

Acrobat JavaScript Object Specification 260

Example: The following code first places a button field in the lower left-hand corner of the
screen page (the cropped page), then places a "Square" annot in exactly the same location. This
script works correctly even if the page is cropped and/or rotated. The script uses some
undocumented JavaScript methods to make the conversion from Rotated User Space to Default
User Space.

var f = this.addField("myButton", "button", 0, [36,36,72,72]);

f.strokeColor = color.black;

var m = (new Matrix2D).fromRotated(this,0);

r = m.transform(f.rect);

this.addAnnot({ type:"Square", rect: r, page: 0 });

Acrobat JavaScript Object Specification 261

How can I create a form field programmatically?

Acrobat provides a large number of JavaScript properties and methods for creating a form field
and to set its appearance and associated action, if any. In this section, an attempt at organizing
all the new (and old) properties and methods is made. The organizational scheme used is the
Acrobat user interface; a correspondence is made between items in the user interface and the
associated JavaScript property or method.

There are seven types of form fields:

Each of these is discussed in turn.

Button

A form field may be created either by the UI for Acrobat, or by the addField method of the Data
Object. Programmatically, a button field is created as follows:

var f = this.addField("myButton", "button", 0, [400, 436, 472, 400]);

This would create a button on page 0, and located at [400, 436, 472, 400]; i.e., the button
would be one inch wide (72 points) and 0.5 inch high (36 points). A default appearance is
given to the field. The return value of this method is a field object that will be used throughout
the rest of this section.

The field object for a field that is already existent can be obtained by the getDataObject method
of the doc object:

var f = this.getField("myButton");

• Button • Radio Button

• Check Box • Signature

• Combo Box • Text

• List Box

Acrobat JavaScript Object Specification 262

Field Properties

The top of the UI, above the tab fields, there are listed three general properties.

Table Notes

• The name and type are read-only properties. They can be set at creation time, either through the UI,
or programmatically, with addField. See the example above.

It is possible through the UI in Acrobat to specify the Appearance of the field, its Options and
its Actions, all of which appear as tabs in the UI for a button field. All these properties can be
accessed through field level JavaScript properties and methods.

Appearance

The appearance tab allows you to set the basic appearance of the field. The table below
summarizes how the appearance can be set programmatically using JavaScript. In the table, it
is assumed that the variable f is a field object.

General Field Properties

Name Use Example

Name name console.println(f.name);

Type type console.println(f.type);

Short Description userName f.userName = "Submit Button"

The Appearance Tab

Region Use Example

Border

Border Color
Background Color
Width
Style

strokeColor
fillColor
lineWidth
borderStyle

f.strokeColor = color.black;
f.fillColor = color.ltGray;
f.lineWidth = 1;
f.borderStyle = style.b

Text

Text Color
Font
Size

textColor
textFont
textSize

f.textColor = color.blue;
f.textFont = font.Times;
f.textSize = 16;

Common Properties

Read Only
Form Field is
Orientation

readonly
display

f.readonly = true;
f.display = display.visible
See tables notes

Acrobat JavaScript Object Specification 263

Table Notes

• There is no property to set the orientation of a form field; however, by rotating the page, creating
the button, then rotating back again, a rotated button can be created.

this.setPageRotations(this.pageNum, this.pageNum, 90);

var f = this.addField("actionField", "button", 0, [200, 250, 300, 200]);

f.delay = true;

f.strokeColor = color.black;

f.fillColor = color.ltGray;

f.borderStyle = style.b;

f.delay=false;

this.setPageRotations(this.pageNum, this.pageNum);

Options

The option tab allows you to set the highlighting, the layout and the button-face attributes.

Table Notes

• For “Select Icon” under “Button Face Attributes”, the basic tool for associating a icon with a button
face is buttonSetIcon; however, this assumes there is a named icon already in the PDF file. See the
doc object addIcon for a complete example of inserting an icon into a button face.

• buttonImportIcon can be used to introduce named icons into the document.

Actions

The action of the button can be set with the field level setAction method with trigger names
"MouseUp", "MouseDown", "MouseEnter", "MouseExit", "OnFocus", "OnBlur". For example,

f.setAction("MouseUp", "app.beep(0);")

The Options Tab

Highlight highlight f.hightlight = hightlight.p

Layout buttonPosition f.buttonPosition = position.iconOnly;

Advanced Layout

Scale When
Scale How
Button

buttonScaleWhen
buttonScaleHow
buttonAlignX and but-
tonAlignY

f.buttonScaleWhen = scaleHow.always
f.buttonScaleHow = scaleHow.proportional
f.buttonAlign = 50;
f.buttonAlign = 50;

Button Face Attributes

Text

Select Icon

buttonSetCaption and
buttonGetCaption
buttonSetIcon

f.buttonSetCaption("Push Me");

See table notes

Acrobat JavaScript Object Specification 264

Check Box

A form field may be created either by the UI for Acrobat, or by the addField method of the Data
Object. Programmatically, a check box is created as follows:

var f = this.addField("myCheck", "checkbox", 0, [400, 412, 412, 400]);

This would create a check box on page 0, and located at [400, 412, 412, 400]; i.e., the check
box would be 12 points wide and 12 points high. A default appearance is given to the field.
The return value of this method is a field object that will be used throughout the rest of this
section.

The field object for a field that is already existent can be obtained by the getField method of the
doc object:

var f = this.getField("myCheck");

Field Properties

The top of the UI, above the tab fields, there are listed three general properties. The properties
are same for button, see the Field Properties for buttons.

Appearance

The Appearance attributes are the same as in the case of button. There are two differences,
however. First, there is no choice for textFont; in the case of a check box, the font is always
Zapf Dingbats. Secondly, under the Common Properties of the Appearance tab, Required
check box is active.

Options

The Options tab allows you to set the style of check used in the field and the export value. The
table below makes the connection between the UI and JavaScript.

The Appearance Tab

Region Use Example

Common Properties

Required required f.required = true;

The Options Tab

Check Style style f.style = style.ci;

Export Value setFocus f.setExportValues(["buy"]);

Default is Checked defaultIsChecked f.defaultIsChecked(0); // see table notes

Acrobat JavaScript Object Specification 265

Table Notes

• Default is Checked: After using defaultIsChecked, the field is not necessarily checked. To check
the field, either reset the field, this.resetForm([f.name]), or apply the checkThisBox
method: f.checkThisBox(0);

• Default is Checked: To determine if the “Default is Checked” check box on the Options tab is
“checked”, use isDefaultChecked.

• To determine if a check box is “checked”, use isBoxChecked.

Actions

The action of the button can be set with the field level setAction method with trigger names
"MouseUp", "MouseDown", "MouseEnter", "MouseExit", "OnFocus", "OnBlur". For example,

f.setAction("MouseUp", "app.beep(0);")

Combo Box

A form field may be created either by the UI for Acrobat, or by the addField method of the Doc
Object. Programmatically, a combo box is created as follows:

var f = this.addField("myCombo", "combobox", 0, [200, 436, 400, 400]);

This would create a check box on page 0, and located at [200, 436, 400, 400]; i.e., the combo
box would be 200 points wide and 36 points high. A default appearance is given to the field.
The return value of this method is a field object that will be used throughout the rest of this
section.

The field object for a field that is already existent can be obtained by the getField method of the
doc object:

var f = this.getField("myCombo");

Field Properties

The top of the UI, above the tab fields, there are listed three general properties. The properties
are same for button, see the Field Properties for buttons.

Acrobat JavaScript Object Specification 266

Appearance

The appearance tab allows you to set the basic appearance of the field. The table below
summarizes how the appearance can be set programmatically using JavaScript. In the table, it
is assumed that the variable f is a field object.

Table Notes

• The field can be reoriented as described in the Table Notes of the section on the button field.

Options

In the Options tab, the item name and its corresponding export value can be set.

Table Notes

• Item and Export Value: After a combo box is created with addField. the item names their export
values can easily be introduced using setItems; for example

The Appearance Tab

Region Use Example

Border

Border Color
Background Color
Width
Style

strokeColor
fillColor
lineWidth
borderStyle

f.strokeColor = color.black;
f.fillColor = color.ltGray;
f.lineWidth = 1;
f.borderStyle = style.b

Text

Text Color
Font
Size

textColor
textFont
textSize

f.textColor = color.blue;
f.textFont = font.Times;
f.textSize = 16;

Common Properties

Read Only
Required
Form Field is
Orientation

readonly
required
display

f.readonly = true;
f.required = true;
f.display = display.visible
See tables notes

The Options Tab

Item setItems see table notes

Export Value setItems see table notes

Sort Items see table notes

Editable editable f.editable = true;

Do Not Spell Check doNotSpellCheck f.doNotSpellCheck = true;

Acrobat JavaScript Object Specification 267

f.setItems([["California", "CA"], ["Ohio", "OH"], ["Arizona", "AZ"]]);

• Sort: There is no direct hook to this check box on the Options tab. This check box is directed at the
Acrobat to sort the list as it is entered in the UI. In the above example of setItems, the items are not
entered in alphabetical order. Programmatically, the list can be sorted using the sort method of the
array object. For example:

function compare (a,b) { // define a compare function

if (a[0] < b[0]) return -1;

if (a[0] > b[0]) return 1;

return 0;

}

 var tmp = new Array();

var f = this.getField("myCombo");

for (var i = 0; i < f.numItems; i++) // load [item, exportvalue]

tmp[i] = [f.getItemAt(i,false), f.getItemAt(i)];

tmp.sort(compare); // sort of first component

 f.clearItems(); // out with the old

f.setItems(tmp); // in with the new

Actions

The action of the button can be set with the field level setAction method with trigger names
"MouseUp", "MouseDown", "MouseEnter", "MouseExit", "OnFocus", "OnBlur". For example,

f.setAction("MouseEnter", "app.beep(0);")

Format

The action of the button can be set with the field level setAction method and a trigger name of
"Format". The UI has several categories of formatting, the JavaScript counterparts are listed in
the table below. Except for custom formatting, all formats can be realized by using the formatting
functions contained in Aform.js.

The Format Tab

Number AFNumber_Format f.setAction("Format",
'AFNumber_Format(2, 0, 0, 0, "\240", true)');

Percentage AFPercent_Format

Date AFDate_FormatEx

Time AFTime_Format

Special AFSpecial_Format

Custom see table notes

Acrobat JavaScript Object Specification 268

Table Notes

• Number: The example in the table corresponds to a comma delimited euro currency with two
decimal points in the UI.

• Custom: Any format script that does not use the above mentioned format functions is classified as
custom formatting script. Custom keyboard script is set using the setAction method with a trigger
name of "Keystroke".

Validate

The action of the button can be set with the field level setAction method and a trigger name of
"Validate". The UI has several categories of Validate, the JavaScript counterparts are listed in
the table below. Except for custom formatting, all formats can be realized by using the formatting
functions contained in Aform.js.

Table Notes

• Custom: Any validate script that does not use the AFRange_Validate function is classified as
custom.

Calculate

The action of the button can be set with the field level setAction method and a trigger name of
"Calculate". The UI has several categories of Calculate, the JavaScript counterparts are listed
in the table below. Except for custom formatting, all formats can be realized by using the formatting
functions contained in Aform.js.

Table Notes

• Custom: Any calculate script that does not use the AFSimple_Calculate function is classified as
custom.

The Validate Tab

Value must be greater than or equal to
and less than or equal to

AFRange_Validate f.setAction("Validate",
'AFRange_Validate(true, 0, true, 100)');
/* value between 0 and 100, inclusive */

Custom see table notes

The Calculate Tab

Value is the sum (product, average,
minimum, maximum) of the
following fields:

AFSimple_Calculate f.setAction("Calculate",
'AFSimple_Calculate("SUM",
new Array ("line.1", "line.3"))');

Custom see table notes

Acrobat JavaScript Object Specification 269

Miscellaneous Programming Notes

• The number of items in a combo (or list) box can be queried using the property numItems.
• getItemAt can be used to get the face name (the item name) and/or the export value of that item.
• insertItemAt can be used to insert a new item into a combo (or list) box.
• deleteItemAt can be used to delete an item from a combo (or list) box.
• clearItems can be used to delete the whole list from the combo (or list) box.
• currentValueIndices can be used to change the current value of the combo (or list) box. For

example, putting f.currentValueIndices = 2 will make the third item (0 based) the current value of
combo box. (Its export value will be exported, if the form is submitted.)

List Box

A form field may be created either by the UI for Acrobat, or by the addField method of the Doc
Object. Programmatically, a list box is created as follows:

var f = this.addField("myList", "listbox", 0, [400, 445, 544, 400]);

This would create a check box on page 0, and located at [200, 445, 544, 400]; i.e., the combo
box would be 2 inches wide (144 point) wide and high enough for three item at 12 point type.
A default appearance is given to the field. The return value of this method is a field object that
will be used throughout the rest of this section.

The field object for a field that is already existent can be obtained by the getField method of the
doc object:

var f = this.getField("myList");

Field Properties

The top of the UI, above the tab fields, there are listed three general properties. The properties
are same for button, see the Field Properties for buttons.

Appearance

The Appearance is the same as that of the combo box.

Options

The Options are the same as that of the comobox, with one exception

The Options Tab

Item setItems see table notes

Acrobat JavaScript Object Specification 270

Table Notes

• Item and Export Value: See Table Notes of the combo box.
• Sort Items: See Table Notes of the combo box.

Actions

The action of the button can be set with the field level setAction method with trigger names
"MouseUp", "MouseDown", "MouseEnter", "MouseExit", "OnFocus", "OnBlur". For example,

f.setAction("MouseUp", "app.beep(0);");

Selection Change

The action of the button can be set with the field level setAction method and a trigger name of
"Keystroke". The UI has several categories of formatting, the JavaScript counterparts are listed
in the table below. Except for custom formatting, all formats can be realized by using the formatting
functions contained in Aform.js

Example:
f.setAction("Keystroke", "ProcessSelection();");

Miscellaneous Programming Notes

See the Miscellaneous Programming Notes of the combo box.

Radio Button

A form field may be created either by the UI for Acrobat, or by the addField method of the Doc
Object. Programmatically, a radio button field is created as follows:

this.addField("myRadio", "radiobutton", 0, [400, 442, 412, 430]);
this.addField("myRadio", "radiobutton", 0, [400, 427, 412, 415]);
var f = this.addField("myRadio", "radiobutton", 0, [400, 412, 412, 400]);
f.setExportValues(["Yes", "No", "Sometimes"]);

This would create a series of three radio buttons on page 0; each radio button would be 12
points wide and 12 points high. A default appearance is given to the field. The return value of
this method is a field object that will be used throughout the rest of this section. The export
values of the different buttons are defined by using setFocus.

Export Value setItems see table notes

Sort Items see table notes

Multiple Selection multipleSelection f.multipleSelection = true;

The Options Tab

Acrobat JavaScript Object Specification 271

The field object for a field that is already existent can be obtained by the getDataObject method
of the doc object:

var f = this.getField("myRadio");

The UI for a radio button is exactly the same as that of a check box. See the section on Check
Box to see how to change the appearance, set the options and actions of a radio button field.

Field Properties

The top of the UI, above the tab fields, there are listed three general properties. The properties
are same for button, see the Field Properties for buttons.

Appearance

The Appearance is the same as that of the combo box.

Options

The Options of a radio button field is the same as that of a check box. The Table Notes are
applicable as well.

Actions

The action of the button can be set with the field level setAction method with trigger names
"MouseUp", "MouseDown", "MouseEnter", "MouseExit", "OnFocus", "OnBlur". For example,

f.setAction("MouseUp", "app.beep(0);")

Signature

A form field may be created either by the UI for Acrobat, or by the addField method of the Doc
Object. Programmatically, a combo box is created as follows:

var f = this.addField("mySignature", "signature", 0, [200, 500, 500, 400]);

This would create a signature field on page 0, and located at [200, 500, 500, 400]; i.e., the
signature field would be 300 points wide and 100 points high. A default appearance is given to
the field. The return value of this method is a field object that will be used throughout the rest
of this section.

The field object for a field that is already existent can be obtained by the getField method of the
Doc Object:

var f = this.getField("mySignature");

Acrobat JavaScript Object Specification 272

Field Properties

The top of the UI, above the tab fields, there are listed three general properties. The properties
are same for button, see the Field Properties for buttons.

Appearance

The Appearance is the same as that of the combo box.

Actions

The action of the button can be set with the field level setAction method with trigger names
"MouseUp", "MouseDown", "MouseEnter", "MouseExit", "OnFocus", "OnBlur". For example,

f.setAction("MouseUp", "app.beep(0);")

Signed

The action of the button can be set with the field level setAction method and a trigger name of
"Format". The UI has several categories of Signed, the JavaScript counterparts are listed in the
table below. Except for custom formatting, all formats can be realized by using the formatting
functions contained in Aform.js

Table Notes

• Custom: Any script that does not use AFSignature_Format is classified as custom.

An Example

Here is a complete example to create, sign, and lock a signature field using JavaScript

// Create signature field dynamically

var f = this.addField("mySignature", "signature", 0, [200, 500, 500, 400]);

f.strokeColor = color.black;

// set it to lock when signed

f.setAction("Format",

'AFSignature_Format("THESE", new Array ("mySignature"));');

var ppklite = security.getHandler("Adobe.PPKLite"); // choose handler

The Signed Tab

Lock all fields (just these fields, all
fields except these)

AFSignature_Format f.setAction("Format",
'AFSignature_Format("THESE",
new Array ("mySignature"));');

Custom see table notes

Acrobat JavaScript Object Specification 273

ppklite.login("dps017", "/C/signatures/DPSmith.apf"); // login

f.signatureSign(ppklite, // sign it

{ password: "dps017",

location: "San Jose, CA",

reason: "I am approving this document",

contactInfo: "dpsmith@adobe.com",

appearance: "Fancy"});

ppklite.logout(); // logout

Text

A form field may be created either by the UI for Acrobat, or by the addField method of the Doc
Object. Programmatically, a combo box is created as follows:

var f = this.addField("myText", "text", 0, [200,516,344,500])

This would create a text field on page 0, and located at [200, 516, 344, 500]; i.e., the text field
would be 144 points wide and 16 points high. A default appearance is given to the field. The
return value of this method is a field object that will be used throughout the rest of this section.

The field object for a field that is already existent can be obtained by the getField method of the
Doc Object:

var f = this.getField("myText");

Field Properties

The top of the UI, above the tab fields, there are listed three general properties. The properties
are same for button, see the Field Properties for buttons.

Appearance

The Appearance is the same as that of the combo box.

Options

In the Options tab, the default text can be entered as various text field attributes can be set.

The Options Tab

Default defaultValue f.defaultValue = "Name: ";

Alignment alignment f.alignment = "center";

Multiline multiline f.multiline = true;

Limit of # Characters charLimit f.charLimit = 40;

Acrobat JavaScript Object Specification 274

Actions

The action of the button can be set with the field level setAction method with trigger names
"MouseUp", "MouseDown", "MouseEnter", "MouseExit", "OnFocus", "OnBlur". For example,

f.setAction("MouseEnter", "app.beep(0);")

Format

The Format tab is the same as that of the combo box.

Validate

The Validate tab is the same as that of the combo box.

Calculate

The Calculate tab is the same as that of the combo box.

Password password f.password = true;

Field is used for File Selection exportValues f.fileSelect = false;

Do Not Spell Check doNotSpellCheck f.doNotSpellCheck = true;

The Options Tab

Acrobat JavaScript Object Specification 275

Quick Reference: Forms

Appearance: All Fields

The appearance tab is much the same for all field types.

type lineWidth

name borderStyle

userName

strokeColor

fillColor

textColor

textFont

readonly

required

display textSize

Acrobat JavaScript Object Specification 276

Action: All Fields

Actions can be set using the Field level method setAction, for example

f.setAction("MouseUp", "app.beep(0);");

The first argument is the action trigger, and the second argument is the JavaScript to be
executed when the trigger event occurs.

setAction("MouseUp",..)

setAction("MouseDown",..)

setAction("MouseEnter,..)

setAction("MouseExit",..)

setAction("OnFocus",..)

setAction("OnBlur",..)

Acrobat JavaScript Object Specification 277

Options: Buttons

For more details and examples, see the Options tab for the Button field.

buttonSetCaption
buttonGetCaption

buttonPosition

highlight

buttonSetIcon
buttonGetIcon

buttonScaleWhen

buttonScaleHow

buttonAlignY

buttonAlignX

Acrobat JavaScript Object Specification 278

Options: Check Box and Radio Button

For more details and examples, see the Options tab for the Check Box and the Options tab for the
Radio Button

.

style

setFocus

defaultIsChecked

Acrobat JavaScript Object Specification 279

Options: Combo and List Boxes

For more details and examples, see the Options tab for the Combo box and the Options tab for
the List box.

Note: The Options tab for the List Box is shown on top, and the Options tab for the Combo
Box is shown beneath it.

setItems

see Table Notes

multipleSelection

editable

doNotSpellCheck

Acrobat JavaScript Object Specification 280

Options: Text Fields

For more details and examples, see the Options tab for the Text field.

defaultValue

alignment

multiline

doNotScroll

charLimit

password

exportValues

doNotSpellCheck

Acrobat JavaScript Object Specification 281

Format: Combo and Text

For more details and examples, see the Format tab for the Combo Box and the Format tab for the
Text field.

Except for the custom keystroke scripts, all format categories are set using the field method
setAction:

f.setAction("Format", '<JSScript>');

Use the following JavaScript functions defined in aform.js for the JScript action

AFNumber_Format

AFPercent_Format

AFDate_FormatEx

AFTime_Format

AFSpecial_Format

Custom:
f.setAction("Format",
'<JSScript>');

f.setAction("Keystroke",
'<JSScript>');

Acrobat JavaScript Object Specification 282

Validate: Combo and Text

For more details and examples, see the Validate tab for the Combo Box and the Validate tab for
the Text field.

Validate scripts are set using the field method setAction:

f.setAction("Validate", '<JScript>');

f.setAction("Validate",
'AFSimple_Calculate(..)');

f.setAction("Validate",
'<JScript>');

Acrobat JavaScript Object Specification 283

Calculate: Combo and Text

For more details and examples, see the Calculate tab for the Combo Box and the Calculate tab for
the Text field.

Calculate scripts are set using the field method setAction:

f.setAction("Calculate", '<JScript>');

f.setAction("Calculate",
'AFSimple_Calculate(...)');

f.setAction("Calculate",

'<JScript>');

Acrobat JavaScript Object Specification 284

Signed

For more details and examples, see the Signed tab for the Signature field.

Signed scripts are set using the field method setAction:

f.setAction("Format", '<JScript>');

f.setAction("Format",
'AFSignature_Format(...)');

f.setAction("Format",
'AFSignature_Format(...)');

Acrobat JavaScript Object Specification 285

Selection Change

For more details and examples, see the Selection Change tab for the List Box field.

Signed scripts are set using the field method setAction:

f.setAction("Keystroke", '<JScript>');

f.setAction("Keystroke",
'<JScript>');

Acrobat JavaScript Object Specification 286

How can I create an Annotation programmatically?

Acrobat provides a large number of JavaScript properties and methods for creating an
annotation. The following is a quick outline of these methods.

There are thirteen types of annotations (only eleven of which are discussed here). They can be
grouped by similarity of properties:

• Circle and Square Annotations • Text Annotations

• Line Annotations • Ink Annotations

• Stamp Annotations • Highlight, Strikeout, Underline and Squiggle

• FreeText Annotations

Acrobat JavaScript Object Specification 287

Circle and Square Annotations

A circle annotation can be constructed with
the addAnnot

Example:
var annot = this.addAnnot(

{

type: "Circle",

page: 0,

rect: [200,200,400,300],

author: "A. C. Robat",

name: "myCircle",

popupOpen: true,

popupRect: [200,100,400,200],

contents: "Hi World!",

strokeColor: color.red,

fillColor: ["RGB",1,1,.855]

});

Here is a slight variation on the previous
example; we use addAnnot and setProps.

Example:
var annot = this.addAnnot

({ type: "Square" });

annot.setProps

({

page: 0,

rect: [200,200,400,400],

author: "A. C. Robat",

name: "mySquare",

popupOpen: true,

popupRect: [200,100,400,200],

contents: "Hi World!",

strokeColor: color.red

});

contents

width

strokeColor

fillColor

author

Acrobat JavaScript Object Specification 288

Line Annotations

A line annotation can be constructed using addAnnot, or by using a combination of addAnnot
and setProps (see Circle and Square Annotations for an example).

contents

arrowEnd

arrowBegin

width

strokeColor

fillColor

author

Example:
var annot = this.addAnnot

({

type: "Line"

page: 0,

points: [[10,40],[200,200]],

author: "A. C. Robat",

name: "myLine",

popupOpen: true,

popupRect: [200, 100, 400, 200],

arrowBegin: "ClosedArrow",

arrowEnd: "OpenArrow",

width: 4,

contents: "Hello World!",

strokeColor: color.red, // border and text color

fillColor: color.green // background color

});

Acrobat JavaScript Object Specification 289

Stamp Annotations

A line annotation can be constructed using addAnnot, or by using a combination of addAnnot
and setProps (see Circle and Square Annotations for an example).

contents

strokeColor

AP

author

Example:
var annot = this.addAnnot

({

page: 0,

type: "Stamp",

name: "myStamp",

author: "A. C. Robat",

rect: [400, 400, 550, 500],

contents: "Try it again, this time with order and method!",

strokeColor: color.blue,

AP: "NotApproved"

});

Acrobat JavaScript Object Specification 290

FreeText Annotations

A FreeText annotation can be constructed using addAnnot, or by using a combination of
addAnnot and setProps (see Circle and Square Annotations for an example).

Example:
var annot = this.addAnnot

({

page: 0,

type: "FreeText",

author: "A. C. Robat",

textFont: "Viva-Regular",

textSize: 12,

alignment: 1,

rect: [10, 10, 42, 200],

fillColor: ["RGB", 1, 1, 0],

strokeColor: color.blue,

name: "myFreeText",

contents: "This is FreeText that has \

been rotated 90 degrees.",

rotate: 90 // no GUI for rotation

});

textFont

textSize

alignment

width

strokeColor

fillColor

author

contents

Acrobat JavaScript Object Specification 291

Text Annotations

A Text annotation can be constructed using addAnnot, or by using a combination of addAnnot
and setProps (see Circle and Square Annotations for an example).

Example:
var annot = this.addAnnot

({

 page: 0,

 type: "Text",

 author: "A. C. Robat",

 point: [300,400],

 strokeColor: color.yellow,

 name: "myHelp",

 contents: "Need a little help with this paragraph.",

 noteIcon: "Help"

});

contents

noteIcon

strokeColor

author

Acrobat JavaScript Object Specification 292

Ink Annotations

An Ink annotation can be constructed using addAnnot, or by using a combination of addAnnot
and setProps (see Circle and Square Annotations for an example).

width

strokeColor

author

Example:
var inch = 72, x0 = 2*inch, y0 = 4*inch;

var scaledInch = .5*inch;

var nNodes = 60;

var theta = 2*Math.PI/nNodes;

var points = new Array();

for (var i = 0; i <= nNodes; i++) {

 Theta = i*theta;

 points[i] = [x0 + 2*Math.cos(2*Theta)*Math.cos(Theta)*scaledInch,

 y0 + 2*Math.cos(2*Theta)*Math.sin(Theta)*scaledInch];

}

var annot = this.addAnnot({

type: "Ink",

page: 0,

name: "myRose",

author: "A. C. Robat",

contents: "Four leaf rose",

gestures: [points],

strokeColor: color.red,

width: 1

}); contents

Acrobat JavaScript Object Specification 293

Highlight, Strikeout, Underline and Squiggle

A mark up annotations can be constructed using addAnnot, or by using a combination of
addAnnot and setProps (see Circle and Square Annotations for an example).

Example: The following code would highlight the three words “mark up annotations” in the
above sentence. The script searches through the current page for the first occurrence of the
word “mark”. The quads are obtained for this word as well as the second word after “mark”,
that’s the word “annotations”. The two sets of quads are combined to form a single set of quads
for all words between “mark” and “annotation”. This is not a practical example, but illustrates
some of the mechanics of working with quads.

var thisPage = this.pageNum;

var numWords = this.getPageNumWords(thisPage);

for (var j = 0; j < numWords; j++) {

 nthWord = this.getPageNthWord(thisPage,j)

 if (nthWord == "mark") {

 aQuadsFirst = this.getPageNthWordQuads(thisPage,j);

 aQuadsLast = this.getPageNthWordQuads(thisPage,j+2);

 annot = this.addAnnot({

 page: thisPage,

 type: "Highlight", // "Underline", "StrikeOut", or "Squiggly"

 strokeColor: color.yellow,

 quads: [[aQuadsFirst[0][0], aQuadsFirst[0][1],

 aQuadsLast[0][2], aQuadsLast[0][3],

 aQuadsFirst[0][4], aQuadsFirst[0][5],

 aQuadsLast[0][6], aQuadsLast[0][7]

]],

 author: "A. C. Acrobat",

 contents: "Highlight, Underline,\rStrikeOut, and Squiggly"

 });

 break;

 }

}

contents

strokeColor

author

Try it: Copy this code
and paste it into the
console. Highlight all
the code and execute it
by pressing Ctrl-Enter,
or the Enter key on the
number pad. The phrase
“mark up annotation”
above should be
highlighted in yellow.
See checkWord for a
spell check example.

	Table of Contents
	Introduction
	Welcome to Acrobat™ JavaScript
	What Is JavaScript?
	What Is Acrobat™ JavaScript?
	Document Conventions
	Tips
	Quick Bars

	If You Need Help
	Useful Documents

	Getting Started with Acrobat™ JavaScript
	Where Can You Use JavaScript?
	JavaScripts within the Document
	JavaScripts external to the Document

	A Quick Example
	Core Language Features
	Data Types
	Variables
	Undefined Variables
	Comments
	Punctuation
	Parameter Specification for Methods
	Quick Help for Methods
	Dealing With Exceptions

	Editing JavaScripts in Acrobat 5.0
	Editing all JavaScripts in a Document
	External Editor
	Tabbing within the Internal Editor

	Interactive JavaScript Console
	Executing JavaScript
	Parameter Help

	Tips for Writing Reliable Code

	Using JavaScript in PDF Forms
	Organizing Your Code
	Working with Fields
	Binding Field Dependencies
	Formatting and Validation Scripts
	Advanced Formatting
	PDF Is Not HTML

	What’s New For 5.0
	Other 5.0 Changes

	ADBC Object
	ADBC properties
	SQL Type
	JavaScript Type

	ADBC methods
	getDataSourceList
	newConnection

	Annot Object
	Annotation Access from JavaScript
	Annot Properties
	alignment
	AP
	arrowBegin
	arrowEnd
	attachIcon
	author
	contents
	doc
	fillColor
	gestures
	hidden
	modDate
	name
	noteIcon
	noView
	page
	point
	points
	popupOpen
	popupRect
	print
	quads
	rect
	readOnly
	rotate
	strokeColor
	textFont
	textSize
	type
	soundIcon
	width

	Annot Methods
	destroy
	getProps
	setProps

	App Object
	App Object Properties
	activeDocs
	calculate
	focusRect
	formsVersion
	fs
	fullscreen
	language
	numPlugIns
	openInPlace
	platform
	plugIns
	toolbar
	toolbarHorizontal
	toolbarVertical
	viewerType
	viewerVariation
	viewerVersion

	App Object Methods
	addMenuItem
	addSubMenu
	alert
	beep
	clearInterval
	clearTimeOut
	execMenuItem
	getNthPlugInName
	goBack
	goForward
	hideMenuItem
	hideToolbarButton
	listMenuItems
	listToolbarButtons
	mailMsg
	newDoc
	openDoc
	popUpMenu
	response
	setInterval
	setTimeOut

	Bookmark Object
	Bookmark Object Properties
	children
	color
	doc
	name
	open
	parent
	style

	Bookmark Object Methods
	createChild
	execute
	insertChild
	remove

	Color Arrays
	Color Object
	Color Properties
	Color Methods
	convert
	equal

	Connection Object
	Connection methods
	newStatement
	getTableList
	getColumnList

	Console Object
	Console Methods
	show
	hide
	println
	clear

	Data Object
	Data Object Properties
	creationDate
	modDate
	MIMEType
	name
	path
	size

	Doc Object
	Doc Access from JavaScript
	Doc Object Properties
	author
	baseURL
	bookmarkRoot
	calculate
	creator
	creationDate
	dataObjects
	delay
	dirty
	external
	filesize
	icons
	info
	keywords
	layout
	modDate
	numFields
	numPages
	numTemplates
	path
	pageNum
	producer
	securityHandler
	selectedAnnots
	sounds
	spellDictionaryOrder
	subject
	templates
	title
	URL
	zoom
	zoomType

	Doc Object Methods
	addAnnot
	addField
	addIcon
	addThumbnails
	addWeblinks
	bringToFront
	calculateNow
	closeDoc
	createDataObject
	createTemplate
	deletePages
	deleteSound
	exportAsFDF
	exportAsXFDF
	exportDataObject
	extractPages
	flattenPages
	getAnnot
	getAnnots
	getDataObject
	getField
	getIcon
	getNthFieldName
	getNthTemplate
	getPageBox
	getPageLabel
	getPageNthWord
	getPageNthWordQuads
	getPageNumWords
	getPageRotation
	getPageTransition
	getSound
	getTemplate
	getURL
	gotoNamedDest
	importAnFDF
	importAnXFDF
	importDataObject
	importIcon
	importSound
	importTextData
	insertPages
	mailDoc
	mailForm
	movePage
	print
	removeDataObject
	removeField
	removeIcon
	removeTemplate
	removeThumbnails
	removeWeblinks
	replacePages
	resetForm
	saveAs
	scroll
	selectPageNthWord
	setPageBoxes
	setPageLabels
	setPageRotations
	setPageTransitions
	spawnPageFromTemplate
	submitForm
	syncAnnotScan

	Event Object
	Event Type/Name Combinations
	App/Init
	Batch/Exec
	Bookmark/Mouse Up
	Console/Exec
	Doc/DidPrint
	Doc/DidSave
	Doc/Open
	Doc/WillClose
	Doc/WillPrint
	Doc/WillSave
	External/Exec
	Field/Blur
	Field/Calculate
	Field/Focus
	Field/Format
	Field/Keystroke
	Field/Mouse Down
	Field/Mouse Enter
	Field/Mouse Exit
	Field/Mouse Up
	Field/Validate
	Link/Mouse Up
	Menu/Exec
	Page/Open
	Page/Close

	Document Event Processing
	Form Event Processing
	Event Object Properties
	change
	changeEx
	commitKey
	keyDown
	modifier
	name
	rc
	selEnd
	selStart
	shift
	source
	target
	targetName
	type
	value
	willCommit

	Field Object
	Field Access from JavaScript
	Field Properties
	alignment
	borderStyle
	buttonAlignX
	buttonAlignY
	buttonPosition
	buttonScaleHow
	buttonScaleWhen
	calcOrderIndex
	charLimit
	currentValueIndices
	defaultValue
	doNotScroll
	doNotSpellCheck
	delay
	display
	doc
	editable
	exportValues
	fileSelect
	fillColor
	hidden
	highlight
	lineWidth
	multiline
	multipleSelection
	name
	numItems
	page
	password
	print
	readonly
	rect
	required
	strokeColor
	style
	submitName
	textColor
	textFont
	textSize
	type
	userName
	value
	valueAsString

	Field Methods
	browseForFileToSubmit
	buttonGetCaption
	buttonGetIcon
	buttonImportIcon
	buttonSetCaption
	buttonSetIcon
	checkThisBox
	clearItems
	defaultIsChecked
	deleteItemAt
	getArray
	getItemAt
	insertItemAt
	isBoxChecked
	isDefaultChecked
	setAction
	setFocus
	setItems
	signatureInfo
	signatureSign
	signatureValidate

	FullScreen Object
	FullScreen Properties
	backgroundColor
	clickAdvances
	cursor
	defaultTransition
	escapeExits
	isFullScreen
	loop
	timeDelay
	transitions
	usePageTiming
	useTimer

	Global Object
	Global Object Properties
	Global Object Methods
	setPersistent
	subscribe

	Identity Object
	Identity Object Properties
	corporation
	email
	loginName
	name

	Index Object
	Index Object Properties
	available
	name
	path
	selected

	PlugIn Object
	PlugIn Object Properties
	certified
	loaded
	name
	path
	version

	PPKLite Signature Handler Object
	PPKLite Object Properties
	appearances
	isLoggedIn
	loginName
	loginPath
	name
	signInvisible
	signVisible
	uiName

	PPKLite Object Methods
	login
	logout
	newUser
	setPasswordTimeout

	Report Object
	Report Object properties
	size
	absIndent
	color

	Report Object Methods
	breakPage
	divide
	indent
	outdent
	open
	save
	mail
	Report
	writeText

	Search Object
	Search Object Properties
	available
	indexes
	matchCase
	maxDocs
	proximity
	refine
	soundex
	stem
	thesaurus

	Search Object Methods
	addIndex
	getIndexForPath
	query
	removeIndex

	Security Object
	Security Object Properties
	handlers
	validateSignaturesOnOpen

	Security Object Methods
	getHandler

	Sound Object
	Sound Object Properties
	name

	Sound Object Methods
	play
	pause
	stop

	Spell Object
	Spell Object Properties
	available
	dictionaryNames
	dictionaryOrder
	domainNames

	Spell Object Methods
	addDictionary
	addWord
	check
	checkText
	checkWord
	removeDictionary
	removeWord
	userWords

	Statement Object
	Statement properties
	columnCount
	rowCount

	Statement methods
	execute
	getColumn
	getColumnArray
	getRow
	nextRow

	Template Object
	Template Object Properties
	hidden
	name

	Template Object Methods
	spawn

	TTS Object
	TTS Properties
	available
	numSpeakers
	pitch
	soundCues
	speaker
	speechCues
	speechRate
	volume

	TTS Methods
	getNthSpeakerName
	pause
	qSilence
	qSound
	qText
	reset
	resume
	stop
	talk

	this Object
	Variable and Function Name Conflicts

	Util Object
	Util Object Methods
	printf
	printd
	printx
	scand

	A Short Acrobat JavaScript FAQ
	Where can JavaScripts be found and how are they used?
	Folder Level JavaScripts
	Document level
	Field level

	How should I name my form fields?
	How do I use date objects?
	Converting from a Date to a String
	Converting from a string to a date
	Date arithmetic

	How can I make my document secure?
	Restricting Access to the Document
	Restricting Permissions
	Digital Signatures

	How can I lock a document after a signature field has been signed?
	How can I make my documents accessible?
	Document Meta-Data
	Short Description
	Setting tab order
	Use the TTS object
	Default Behavior

	How can I define globals in JavaScript?
	Making Globals Persistent

	How can I send form data to an e-mail address?
	How can I hide a field based on the value of another?
	How can I query a field value in another open form from the form I'm working on?
	How can I intercept keystrokes one by one as they occur?
	How can I build a nested popup menu?
	How can I construct my own colors?
	How can I prompt the user for a response in a dialog?
	How can I fetch an URL from JavaScript?
	How can I change the hot-help text for a field dynamically?
	How can I change the zoom factor programmatically?
	How can I determine if the mouse has entered/left a certain area?
	What are Rotated User Space and Default User Space?
	Rotated User Space
	Default User Space
	Graphical Relationship

	How can I create a form field programmatically?
	Button
	Check Box
	Combo Box
	List Box
	Radio Button
	Signature
	Text
	Action: All Fields
	Options: Buttons

	Quick Reference: Forms
	Appearance: All Fields
	Options: Check Box and Radio Button
	Options: Combo and List Boxes
	Options: Text Fields
	Format: Combo and Text
	Validate: Combo and Text
	Calculate: Combo and Text
	Signed
	Selection Change

	How can I create an Annotation programmatically?
	Circle and Square Annotations
	Line Annotations
	Stamp Annotations
	FreeText Annotations
	Text Annotations
	Ink Annotations
	Highlight, Strikeout, Underline and Squiggle

		2001-03-01T13:50:19-0600
	San Jose, CA, USA
	Carl W. Orthlieb
	Document is ready for release.

