/* * linux/arch/arm/mach-sa1100/adsbitsy.c * * Author: Woojung Huh * * Pieces specific to the ADS Bitsy * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "generic.h" #include "sa1111.h" static int __init adsbitsy_init(void) { int ret; if (!machine_is_adsbitsy()) return -ENODEV; /* * Ensure that the memory bus request/grant signals are setup, * and the grant is held in its inactive state */ sa1110_mb_disable(); /* Bitsy uses GPIO pins for SPI interface to AVR * Bitsy Plus uses the standard pins instead. * it also needs to reset the AVR when booting */ PPAR |= PPAR_SSPGPIO; /* * Reset SA1111 */ GPCR |= GPIO_GPIO26; udelay(1000); GPSR |= GPIO_GPIO26; #ifndef CONFIG_LEDS_TIMER // Set Serial port 1 RTS and DTR Low during sleep PGSR |= GPIO_GPIO15 | GPIO_GPIO20; #else // only RTS (because DTR is also the LED // which should be off during sleep); PGSR |= GPIO_GPIO15; #endif // Set Serial port 3RTS Low during sleep PGSR |= GPIO_GPIO19; /* * Probe for SA1111. */ ret = sa1111_probe(ADSBITSY_SA1111_BASE); if (ret < 0) return ret; /* * We found it. Wake the chip up. */ sa1111_wake(); /* * The SDRAM configuration of the SA1110 and the SA1111 must * match. This is very important to ensure that SA1111 accesses * don't corrupt the SDRAM. Note that this ungates the SA1111's * MBGNT signal, so we must have called sa1110_mb_disable() * beforehand. */ sa1111_configure_smc(1, FExtr(MDCNFG, MDCNFG_SA1110_DRAC0), FExtr(MDCNFG, MDCNFG_SA1110_TDL0)); /* * We only need to turn on DCLK whenever we want to use the * DMA. It can otherwise be held firmly in the off position. */ SKPCR |= SKPCR_DCLKEN; /* * Enable the SA1110 memory bus request and grant signals. */ sa1110_mb_enable(); set_GPIO_IRQ_edge(GPIO_GPIO0, GPIO_RISING_EDGE); sa1111_init_irq(IRQ_GPIO0); return 0; } __initcall(adsbitsy_init); static void __init adsbitsy_init_irq(void) { /* First the standard SA1100 IRQs */ sa1100_init_irq(); } static struct map_desc adsbitsy_io_desc[] __initdata = { /* virtual physical length domain r w c b */ { 0xe8000000, 0x08000000, 0x02000000, DOMAIN_IO, 0, 1, 0, 0 }, /* Flash bank 1 */ { 0xf0000000, 0x3C000000, 0x00004000, DOMAIN_IO, 0, 1, 0, 0 }, /* 91C1111 */ { 0xf4000000, 0x18000000, 0x00800000, DOMAIN_IO, 0, 1, 0, 0 }, /* SA1111 */ LAST_DESC }; /* Use this to see when all uarts are shutdown. Or all are closed. * We can only turn off RS232 chip if either of these are true. */ static int uart_wake_count[3] = {1, 1, 1}; enum {UART_SHUTDOWN, UART_WAKEUP}; static void update_uart_counts(int line, int state) { switch (state) { case UART_WAKEUP: uart_wake_count[line]++; break; case UART_SHUTDOWN: uart_wake_count[line]--; break; } } static int adsbitsy_uart_open(struct uart_port *port, struct uart_info *info) { if (port->mapbase == _Ser1UTCR0) { Ser1SDCR0 |= SDCR0_UART; } else if (port->mapbase == _Ser2UTCR0) { Ser2UTCR4 = Ser2HSCR0 = 0; } return 0; } void adsbitsy_uart_pm(struct uart_port *port, u_int state, u_int oldstate) { // state has ACPI D0-D3 // ACPI D0 : resume from suspend // ACPI D1-D3 : enter to a suspend state if (port->mapbase == _Ser1UTCR0) { if (state) { update_uart_counts(1, UART_SHUTDOWN); // disable uart Ser1UTCR3 = 0; } else { update_uart_counts(1, UART_WAKEUP); } } else if (port->mapbase == _Ser2UTCR0) { if (state) { update_uart_counts(2, UART_SHUTDOWN); // disable uart Ser2UTCR3 = 0; Ser2HSCR0 = 0; } else { update_uart_counts(2, UART_WAKEUP); } } else if (port->mapbase == _Ser3UTCR0) { if (state) { update_uart_counts(0, UART_SHUTDOWN); // disable uart Ser3UTCR3 = 0; } else { update_uart_counts(0, UART_WAKEUP); } } } static void adsbitsy_set_mctrl(struct uart_port *port, u_int mctrl) { // note: only ports 1 and 3 have modem control if (port->mapbase == _Ser1UTCR0) { if (mctrl & TIOCM_RTS) // Set RTS High GPCR = GPIO_GPIO15; else // Set RTS LOW GPSR = GPIO_GPIO15; if (mctrl & TIOCM_DTR) // Set DTR High GPCR = GPIO_GPIO20; else // Set DTR Low GPSR = GPIO_GPIO20; } else if (port->mapbase == _Ser3UTCR0) { if (mctrl & TIOCM_RTS) // Set RTS High GPCR = GPIO_GPIO19; else // Set RTS LOW GPSR = GPIO_GPIO19; } } static u_int adsbitsy_get_mctrl(struct uart_port *port) { u_int ret = 0; // note: only ports 1 and 3 have modem control if (port->mapbase == _Ser1UTCR0) { if (!(GPLR & GPIO_GPIO14)) ret |= TIOCM_CTS; if (!(GPLR & GPIO_GPIO24)) ret |= TIOCM_DSR; if (!(GPLR & GPIO_GPIO16)) ret |= TIOCM_RI; if (!(GPLR & GPIO_GPIO17)) ret |= TIOCM_CD; } else if (port->mapbase == _Ser3UTCR0) { if (!(GPLR & GPIO_GPIO18)) ret |= TIOCM_CTS; } return ret; } static struct sa1100_port_fns adsbitsy_port_fns __initdata = { .set_mctrl = adsbitsy_set_mctrl, .get_mctrl = adsbitsy_get_mctrl, .open = adsbitsy_uart_open, .pm = adsbitsy_uart_pm, }; static void __init adsbitsy_map_io(void) { sa1100_map_io(); iotable_init(adsbitsy_io_desc); sa1100_register_uart_fns(&adsbitsy_port_fns); sa1100_register_uart(0, 3); sa1100_register_uart(1, 1); // don't register if you want to use IRDA #ifndef CONFIG_SA1100_FIR sa1100_register_uart(2, 2); #endif // COM1 Set RTS and DTR Output GPDR |= GPIO_GPIO15 | GPIO_GPIO20; // Set CTS, DSR, RI and CD Input GPDR &= ~(GPIO_GPIO14 | GPIO_GPIO24 | GPIO_GPIO16 | GPIO_GPIO17); // COM3 Set RTS Output GPDR |= GPIO_GPIO19; // Set CTS Input GPDR &= ~GPIO_GPIO18; } MACHINE_START(ADSBITSY, "ADS Bitsy") BOOT_PARAMS(0xc000003c) BOOT_MEM(0xc0000000, 0x80000000, 0xf8000000) MAPIO(adsbitsy_map_io) INITIRQ(adsbitsy_init_irq) MACHINE_END