/* * linux/arch/arm/mach-sa1100/adsbitsyplus.c * * Author: Robert Whaley * * This file comes from adsbitsy.c of Woojung Huh * * Pieces specific to the ADS Bitsy Plus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "generic.h" #include "sa1111.h" /* unfortunately, we can't detect the difference between REV 2 and REV A connector boards. So by convention, the registers.txt file is used to set a byte to either 0x02 or 0x0a to make this distinction. The bootloader must detect this by default we assume rev A since most boards will be rev A */ static int adsbitsyplus_connector_board_rev_number = 0xA; static int __init adsbitsyplus_connector_board_rev_setup(char *str) { adsbitsyplus_connector_board_rev_number = simple_strtol(str,NULL,0); return 1; } int adsbitsyplus_connector_board_rev(void) { static int only_once = 1; if (only_once) { printk(KERN_INFO "Bitsy Connector Board REV: %#x\n", adsbitsyplus_connector_board_rev_number); only_once = 0; } return adsbitsyplus_connector_board_rev_number; } static int __init adsbitsyplus_init(void) { int ret; if (!machine_is_adsbitsyplus()) return -ENODEV; /* * Ensure that the memory bus request/grant signals are setup, * and the grant is held in its inactive state */ sa1110_mb_disable(); /* Bitsy uses GPIO pins for SPI interface to AVR * Bitsy Plus uses the standard pins instead. * it also needs to reset the AVR when booting */ PPAR &= ~PPAR_SSPGPIO; ADS_CPLD_SUPPC |= ADS_SUPPC_AVR_WKP; mdelay(100); ADS_CPLD_SUPPC &= ~ADS_SUPPC_AVR_WKP; /* * Reset SA1111 */ GPCR |= GPIO_GPIO26; udelay(1000); GPSR |= GPIO_GPIO26; #ifndef CONFIG_LEDS_TIMER // Set Serial port 1 RTS and DTR Low during sleep PGSR |= GPIO_GPIO15 | GPIO_GPIO20; #else // only RTS (because DTR is also the LED // which should be off during sleep); PGSR |= GPIO_GPIO15; #endif // Set Serial port 3RTS Low during sleep PGSR |= GPIO_GPIO19; /* * Probe for SA1111. */ ret = sa1111_probe(ADSBITSYPLUS_SA1111_BASE); if (ret < 0) return ret; /* * We found it. Wake the chip up. */ sa1111_wake(); /* * The SDRAM configuration of the SA1110 and the SA1111 must * match. This is very important to ensure that SA1111 accesses * don't corrupt the SDRAM. Note that this ungates the SA1111's * MBGNT signal, so we must have called sa1110_mb_disable() * beforehand. */ sa1111_configure_smc(1, FExtr(MDCNFG, MDCNFG_SA1110_DRAC0), FExtr(MDCNFG, MDCNFG_SA1110_TDL0)); /* * We only need to turn on DCLK whenever we want to use the * DMA. It can otherwise be held firmly in the off position. */ SKPCR |= SKPCR_DCLKEN; /* * Enable the SA1110 memory bus request and grant signals. */ sa1110_mb_enable(); set_GPIO_IRQ_edge(GPIO_GPIO0, GPIO_RISING_EDGE); sa1111_init_irq(IRQ_GPIO0); return 0; } __initcall(adsbitsyplus_init); static void __init adsbitsyplus_init_irq(void) { /* First the standard SA1100 IRQs */ sa1100_init_irq(); } /* * Resume SA1111 when system wakes up */ void adsbitsyplus_sa1111_wake(unsigned long pa_dwr) { // Turn ON SA1111 GPCR |= GPIO_GPIO26; mdelay(1); GPSR |= GPIO_GPIO26; GAFR |= GPIO_32_768kHz; GPDR |= GPIO_32_768kHz; TUCR = TUCR_3_6864MHz; SBI_SKCR = SKCR_PLL_BYPASS | SKCR_RDYEN | SKCR_OE_EN; udelay(100); SBI_SKCR = SKCR_PLL_BYPASS | SKCR_RCLKEN | SKCR_RDYEN | SKCR_OE_EN; GAFR |= (GPIO_MBGNT | GPIO_MBREQ); GPDR |= GPIO_MBGNT; GPDR &= ~GPIO_MBREQ; TUCR |= TUCR_MR; sa1111_configure_smc(1, FExtr(MDCNFG, MDCNFG_SA1110_DRAC0), FExtr(MDCNFG, MDCNFG_SA1110_TDL0)); SKPCR |= SKPCR_DCLKEN; // Reset PCMCIA PCCR = 0xFF; mdelay(100); PA_DDR = 0x00; // PA_DWR = GPIO_GPIO0 | GPIO_GPIO1 | GPIO_GPIO2 | GPIO_GPIO3; // PA_DWR = GPIO_GPIO0 | GPIO_GPIO2 | GPIO_GPIO3; PA_DWR = pa_dwr; PCCR = ~(PCCR_S0_RST | PCCR_S1_RST); #ifdef CONFIG_USB_OHCI_SA1111 // Turn ON clock SKPCR |= SKPCR_UCLKEN; udelay(100); // force a RESET USB_RESET = 0x01; USB_RESET |= 0x02; udelay(100); // Set Power Sense and Control Line USB_RESET = 0; USB_RESET = USB_RESET_PWRSENSELOW; USB_STATUS = 0; udelay(10); #endif } static struct map_desc adsbitsyplus_io_desc[] __initdata = { /* virtual physical length domain r w c b */ { 0xe8000000, 0x08000000, 0x02000000, DOMAIN_IO, 0, 1, 0, 0 }, /* Flash bank 1 */ { 0xf0000000, 0x3C000000, 0x00004000, DOMAIN_IO, 0, 1, 0, 0 }, /* 91C1111 */ { 0xf4000000, 0x18000000, 0x00800000, DOMAIN_IO, 0, 1, 0, 0 }, /* SA1111 */ { 0xf1000000, 0x10000000, 0x00001000, DOMAIN_IO, 0, 1, 0, 0 }, /* CPLD Controller */ LAST_DESC }; /* Use this to see when all uarts are shutdown. Or all are closed. * We can only turn off RS232 chip if either of these are true. */ static int uart_wake_count[3] = {1, 1, 1}; enum {UART_SHUTDOWN, UART_WAKEUP}; static void update_uart_counts(int line, int state) { switch (state) { case UART_WAKEUP: uart_wake_count[line]++; break; case UART_SHUTDOWN: uart_wake_count[line]--; break; } } static int adsbitsyplus_uart_open(struct uart_port *port, struct uart_info *info) { if (port->mapbase == _Ser1UTCR0) { Ser1SDCR0 |= SDCR0_UART; } else if (port->mapbase == _Ser2UTCR0) { Ser2UTCR4 = Ser2HSCR0 = 0; } return 0; } void adsbitsyplus_uart_pm(struct uart_port *port, u_int state, u_int oldstate) { // state has ACPI D0-D3 // ACPI D0 : resume from suspend // ACPI D1-D3 : enter to a suspend state if (port->mapbase == _Ser1UTCR0) { if (state) { update_uart_counts(1, UART_SHUTDOWN); // disable uart Ser1UTCR3 = 0; } else { update_uart_counts(1, UART_WAKEUP); } } else if (port->mapbase == _Ser2UTCR0) { if (state) { update_uart_counts(2, UART_SHUTDOWN); // disable uart Ser2UTCR3 = 0; Ser2HSCR0 = 0; } else { update_uart_counts(2, UART_WAKEUP); } } else if (port->mapbase == _Ser3UTCR0) { if (state) { update_uart_counts(0, UART_SHUTDOWN); // disable uart Ser3UTCR3 = 0; } else { update_uart_counts(0, UART_WAKEUP); } } if (state == 0) { // Turn power on if uarts are awake if (uart_wake_count[0] + uart_wake_count[1] != 0) { // make sure RS-232 is turned on if 1 or 3 are open ADS_CPLD_PCON |= ADS_PCON_COM1_3_ON; } if (uart_wake_count[2] != 0) { if (adsbitsyplus_connector_board_rev() >= 0x0a) ADS_CPLD_PCON |= ADS_PCON_CONN_B_PE2; } } else { // Turn power off if uarts are asleep if (uart_wake_count[0] + uart_wake_count[1] == 0) { // save power if we are sleeping ADS_CPLD_PCON &= ~ADS_PCON_COM1_3_ON; GAFR &= ~(GPIO_GPIO15 | GPIO_GPIO19 | GPIO_GPIO20); GPDR |= GPIO_GPIO15 | GPIO_GPIO19 | GPIO_GPIO20; } if (uart_wake_count[2] == 0) { if (adsbitsyplus_connector_board_rev() >= 0x0a) ADS_CPLD_PCON &= ~ADS_PCON_CONN_B_PE2; } } } static void adsbitsyplus_set_mctrl(struct uart_port *port, u_int mctrl) { // note: only ports 1 and 3 have modem control if (port->mapbase == _Ser1UTCR0) { if (mctrl & TIOCM_RTS) // Set RTS High GPCR = GPIO_GPIO15; else // Set RTS LOW GPSR = GPIO_GPIO15; if (mctrl & TIOCM_DTR) // Set DTR High GPCR = GPIO_GPIO20; else // Set DTR Low GPSR = GPIO_GPIO20; } else if (port->mapbase == _Ser3UTCR0) { if (mctrl & TIOCM_RTS) // Set RTS High GPCR = GPIO_GPIO19; else // Set RTS LOW GPSR = GPIO_GPIO19; } } static u_int adsbitsyplus_get_mctrl(struct uart_port *port) { u_int ret = 0; // note: only ports 1 and 3 have modem control if (port->mapbase == _Ser1UTCR0) { if (!(GPLR & GPIO_GPIO14)) ret |= TIOCM_CTS; if (!(GPLR & GPIO_GPIO24)) ret |= TIOCM_DSR; if (!(GPLR & GPIO_GPIO16)) ret |= TIOCM_RI; if (!(GPLR & GPIO_GPIO17)) ret |= TIOCM_CD; } else if (port->mapbase == _Ser3UTCR0) { if (!(GPLR & GPIO_GPIO18)) ret |= TIOCM_CTS; } return ret; } static struct sa1100_port_fns adsbitsyplus_port_fns __initdata = { .set_mctrl = adsbitsyplus_set_mctrl, .get_mctrl = adsbitsyplus_get_mctrl, .open = adsbitsyplus_uart_open, .pm = adsbitsyplus_uart_pm, }; static void __init adsbitsyplus_map_io(void) { sa1100_map_io(); iotable_init(adsbitsyplus_io_desc); sa1100_register_uart_fns(&adsbitsyplus_port_fns); sa1100_register_uart(0, 3); sa1100_register_uart(1, 1); // don't register if you want to use IRDA #ifndef CONFIG_SA1100_FIR sa1100_register_uart(2, 2); #endif // COM1 Set RTS and DTR Output GPDR |= GPIO_GPIO15 | GPIO_GPIO20; // Set CTS, DSR, RI and CD Input GPDR &= ~(GPIO_GPIO14 | GPIO_GPIO24 | GPIO_GPIO16 | GPIO_GPIO17); // COM3 Set RTS Output GPDR |= GPIO_GPIO19; // Set CTS Input GPDR &= ~GPIO_GPIO18; } __setup("adsbitsyplus_conn_board_rev=", adsbitsyplus_connector_board_rev_setup); MACHINE_START(ADSBITSYPLUS, "ADS Bitsy Plus") BOOT_PARAMS(0xc000003c) BOOT_MEM(0xc0000000, 0x80000000, 0xf8000000) MAPIO(adsbitsyplus_map_io) INITIRQ(adsbitsyplus_init_irq) MACHINE_END