/* * pci_dn.c * * Copyright (C) 2001 Todd Inglett, IBM Corporation * * PCI manipulation via device_nodes. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pci.h" /* Traverse_func that inits the PCI fields of the device node. * NOTE: this *must* be done before read/write config to the device. */ static void * __init update_dn_pci_info(struct device_node *dn, void *data) { struct pci_controller *phb = (struct pci_controller *)data; u32 *regs; char *device_type = get_property(dn, "device_type", 0); char *status = get_property(dn, "status", 0); dn->phb = phb; if (device_type && strcmp(device_type, "pci") == 0 && get_property(dn, "class-code", 0) == 0) { /* special case for PHB's. Sigh. */ regs = (u32 *)get_property(dn, "bus-range", 0); dn->busno = regs[0]; dn->devfn = 0; /* assumption */ } else { regs = (u32 *)get_property(dn, "reg", 0); if (regs) { /* First register entry is addr (00BBSS00) */ dn->busno = (regs[0] >> 16) & 0xff; dn->devfn = (regs[0] >> 8) & 0xff; } } if (status && strcmp(status, "ok") != 0) { char *name = get_property(dn, "name", 0); printk(KERN_ERR "PCI: %04x:%02x.%x %s (%s) has bad status from firmware! (%s)", dn->busno, PCI_SLOT(dn->devfn), PCI_FUNC(dn->devfn), name ? name : "", device_type ? device_type : "", status); dn->status = 1; } return NULL; } /* * Hit all the BARs of all the devices with values from OF. * This is unnecessary on most systems, but also harmless. */ static void * __init write_OF_bars(struct device_node *dn, void *data) { #ifdef CONFIG_PPC_PSERIES int i; u32 oldbar, newbar, newbartest; u8 config_offset; #endif char *name = get_property(dn, "name", 0); char *device_type = get_property(dn, "device_type", 0); char devname[128]; sprintf(devname, "%04x:%02x.%x %s (%s)", dn->busno, PCI_SLOT(dn->devfn), PCI_FUNC(dn->devfn), name ? name : "", device_type ? device_type : ""); if (device_type && strcmp(device_type, "pci") == 0 && get_property(dn, "class-code", 0) == 0) return NULL; /* This is probably a phb. Skip it. */ if (dn->n_addrs == 0) return NULL; /* This is normal for some adapters or bridges */ if (dn->addrs == NULL) { /* This shouldn't happen. */ printk(KERN_WARNING "write_OF_bars %s: device has %d BARs, but no addrs recorded\n", devname, dn->n_addrs); return NULL; } #ifndef CONFIG_PPC_ISERIES for (i = 0; i < dn->n_addrs; i++) { newbar = dn->addrs[i].address; config_offset = dn->addrs[i].space & 0xff; if (ppc_md.pcibios_read_config_dword(dn, config_offset, &oldbar) != PCIBIOS_SUCCESSFUL) { printk(KERN_WARNING "write_OF_bars %s: read BAR%d failed\n", devname, i); continue; } /* Need to update this BAR. */ if (ppc_md.pcibios_write_config_dword(dn, config_offset, newbar) != PCIBIOS_SUCCESSFUL) { printk(KERN_WARNING "write_OF_bars %s: write BAR%d with 0x%08x failed (old was 0x%08x)\n", devname, i, newbar, oldbar); continue; } /* sanity check */ if (ppc_md.pcibios_read_config_dword(dn, config_offset, &newbartest) != PCIBIOS_SUCCESSFUL) { printk(KERN_WARNING "write_OF_bars %s: sanity test read BAR%d failed?\n", devname, i); continue; } if ((newbar & PCI_BASE_ADDRESS_MEM_MASK) != (newbartest & PCI_BASE_ADDRESS_MEM_MASK)) { printk(KERN_WARNING "write_OF_bars %s: oops...BAR%d read back as 0x%08x%s!\n", devname, i, newbartest, (oldbar & PCI_BASE_ADDRESS_MEM_MASK) == (newbartest & PCI_BASE_ADDRESS_MEM_MASK) ? " (original value)" : ""); continue; } } #endif return NULL; } #if 0 /* Traverse_func that starts the BIST (self test) */ static void * __init startBIST(struct device_node *dn, void *data) { struct pci_controller *phb = (struct pci_controller *)data; u8 bist; char *name = get_property(dn, "name", 0); udbg_printf("startBIST: %s phb=%p, device=%p\n", name ? name : "", phb, dn); if (ppc_md.pcibios_read_config_byte(dn, PCI_BIST, &bist) == PCIBIOS_SUCCESSFUL) { if (bist & PCI_BIST_CAPABLE) { udbg_printf(" -> is BIST capable!\n", phb, dn); /* Start bist here */ } } return NULL; } #endif /****************************************************************** * Traverse a device tree stopping each PCI device in the tree. * This is done depth first. As each node is processed, a "pre" * function is called, the children are processed recursively, and * then a "post" function is called. * * The "pre" and "post" funcs return a value. If non-zero * is returned from the "pre" func, the traversal stops and this * value is returned. The return value from "post" is not used. * This return value is useful when using traverse as * a method of finding a device. * * NOTE: we do not run the funcs for devices that do not appear to * be PCI except for the start node which we assume (this is good * because the start node is often a phb which may be missing PCI * properties). * We use the class-code as an indicator. If we run into * one of these nodes we also assume its siblings are non-pci for * performance. * ******************************************************************/ void *traverse_pci_devices(struct device_node *start, traverse_func pre, traverse_func post, void *data) { struct device_node *dn, *nextdn; void *ret; if (pre && (ret = pre(start, data)) != NULL) return ret; for (dn = start->child; dn; dn = nextdn) { nextdn = NULL; if (get_property(dn, "class-code", 0)) { if (pre && (ret = pre(dn, data)) != NULL) return ret; if (dn->child) { /* Depth first...do children */ nextdn = dn->child; } else if (dn->sibling) { /* ok, try next sibling instead. */ nextdn = dn->sibling; } else { /* no more children or siblings...call "post" */ if (post) post(dn, data); } } if (!nextdn) { /* Walk up to next valid sibling. */ do { dn = dn->parent; if (dn == start) return NULL; } while (dn->sibling == NULL); nextdn = dn->sibling; } } return NULL; } /* Same as traverse_pci_devices except this does it for all phbs. */ void *traverse_all_pci_devices(traverse_func pre) { struct pci_controller* phb; void *ret; for (phb=hose_head;phb;phb=phb->next) if ((ret = traverse_pci_devices((struct device_node *)phb->arch_data, pre, NULL, phb)) != NULL) return ret; return NULL; } /* Traversal func that looks for a value. * If found, the device_node is returned (thus terminating the traversal). */ static void * is_devfn_node(struct device_node *dn, void *data) { int busno = ((unsigned long)data >> 8) & 0xff; int devfn = ((unsigned long)data) & 0xff; return (devfn == dn->devfn && busno == dn->busno) ? dn : NULL; } /* Same as is_devfn_node except ignore the "fn" part of the "devfn". */ static void * is_devfn_sub_node(struct device_node *dn, void *data) { int busno = ((unsigned long)data >> 8) & 0xff; int devfn = ((unsigned long)data) & 0xf8; return (devfn == (dn->devfn & 0xf8) && busno == dn->busno) ? dn : NULL; } /* Given an existing EADs (pci bridge) device node create a fake one * that will simulate function zero. Make it a sibling of other_eads. */ static struct device_node * create_eads_node(struct device_node *other_eads) { struct device_node *eads = (struct device_node *)kmalloc(sizeof(struct device_node), GFP_KERNEL); if (!eads) return NULL; /* huh? */ *eads = *other_eads; eads->devfn &= ~7; /* make it function zero */ eads->tce_table = NULL; /* * NOTE: share properties. We could copy but for now this should * suffice. The full_name is also incorrect...but seems harmless. */ eads->child = NULL; eads->next = NULL; other_eads->allnext = eads; other_eads->sibling = eads; return eads; } /* This is the "slow" path for looking up a device_node from a * pci_dev. It will hunt for the device under it's parent's * phb and then update sysdata for a future fastpath. * * It may also do fixups on the actual device since this happens * on the first read/write. * * Note that it also must deal with devices that don't exist. * In this case it may probe for real hardware ("just in case") * and add a device_node to the device tree if necessary. * */ struct device_node *fetch_dev_dn(struct pci_dev *dev) { struct device_node *orig_dn = (struct device_node *)dev->sysdata; struct pci_controller *phb = orig_dn->phb; /* assume same phb as orig_dn */ struct device_node *phb_dn; struct device_node *dn; unsigned long searchval = (dev->bus->number << 8) | dev->devfn; phb_dn = (struct device_node *)(phb->arch_data); dn = (struct device_node *)traverse_pci_devices(phb_dn, is_devfn_node, NULL, (void *)searchval); if (dn) { dev->sysdata = dn; /* ToDo: call some device init hook here */ } else { /* Now it is very possible that we can't find the device * because it is not the zero'th device of a mutifunction * device and we don't have permission to read the zero'th * device. If this is the case, Linux would ordinarily skip * all the other functions. */ if ((searchval & 0x7) == 0) { struct device_node *thisdevdn; /* Ok, we are looking for fn == 0. Let's check for other functions. */ thisdevdn = (struct device_node *)traverse_pci_devices(phb_dn, is_devfn_sub_node, NULL, (void *)searchval); if (thisdevdn) { /* Ah ha! There does exist a sub function. * Now this isn't an exact match for * searchval, but in order to get Linux to * believe the sub functions exist we will * need to manufacture a fake device_node for * this zero'th function. To keept this * simple for now we only handle pci bridges * and we just hand back the found node which * isn't correct, but Linux won't care. */ char *device_type = (char *)get_property(thisdevdn, "device_type", 0); if (device_type && strcmp(device_type, "pci") == 0) { return create_eads_node(thisdevdn); } } } /* ToDo: device not found...probe for it anyway with a fake dn? struct device_node fake_dn; memset(&fake_dn, 0, sizeof(fake_dn)); fake_dn.phb = phb; fake_dn.busno = dev->bus->number; fake_dn.devfn = dev->devfn; ... now do ppc_md.pcibios_read_config_dword(&fake_dn.....) ... if ok, alloc a real device_node and dn = real_dn; */ } return dn; } /****************************************************************** * Actually initialize the phbs. * The buswalk on this phb has not happened yet. ******************************************************************/ void __init pci_devs_phb_init(void) { /* This must be done first so the device nodes have valid pci info! */ traverse_all_pci_devices(update_dn_pci_info); /* Hack for regatta which does not init the bars correctly */ traverse_all_pci_devices(write_OF_bars); #if 0 traverse_all_pci_devices(startBIST); mdelay(5000); traverse_all_pci_devices(checkBIST); #endif } static void __init pci_fixup_bus_sysdata_list(struct list_head *bus_list) { struct list_head *ln; struct pci_bus *bus; struct pci_controller *phb; int newnum; for (ln=bus_list->next; ln != bus_list; ln=ln->next) { bus = pci_bus_b(ln); if (bus->self) { bus->sysdata = bus->self->sysdata; /* Also fixup the bus number on large bus systems to * include the PHB# in the next byte */ phb = PCI_GET_DN(bus)->phb; if (phb && phb->buid) { newnum = (phb->global_number << 8) | bus->number; bus->number = newnum; sprintf(bus->name, "PCI Bus #%x", bus->number); } } pci_fixup_bus_sysdata_list(&bus->children); } } /****************************************************************** * Fixup the bus->sysdata ptrs to point to the bus' device_node. * This is done late in pcibios_init(). We do this mostly for * sanity, but pci_dma.c uses these at DMA time so they must be * correct. * To do this we recurse down the bus hierarchy. Note that PHB's * have bus->self == NULL, but fortunately bus->sysdata is already * correct in this case. ******************************************************************/ void __init pci_fix_bus_sysdata(void) { pci_fixup_bus_sysdata_list(&pci_root_buses); }