/* * linux/arch/ppc64/kernel/process.c * * Derived from "arch/i386/kernel/process.c" * Copyright (C) 1995 Linus Torvalds * * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and * Paul Mackerras (paulus@cs.anu.edu.au) * * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * VMX/Altivec port from ppc32 (c) IBM 2003 * Denis Joseph Barrow (dj@de.ibm.com,barrow_dj@yahoo.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs); #ifndef CONFIG_SMP struct task_struct *last_task_used_math = NULL; struct task_struct *last_task_used_altivec = NULL; #endif /* CONFIG_SMP */ static struct fs_struct init_fs = INIT_FS; static struct files_struct init_files = INIT_FILES; static struct signal_struct init_signals = INIT_SIGNALS; struct mm_struct init_mm = INIT_MM(init_mm); struct mm_struct ioremap_mm = { pgd : ioremap_dir ,page_table_lock : SPIN_LOCK_UNLOCKED }; /* this is 16-byte aligned because it has a stack in it */ union task_union __attribute((aligned(16))) init_task_union = { INIT_TASK(init_task_union.task) }; #ifdef CONFIG_SMP struct current_set_struct current_set[NR_CPUS] = {{&init_task, 0}, }; #endif char *sysmap = NULL; unsigned long sysmap_size = 0; extern char __toc_start; #undef SHOW_TASK_SWITCHES void enable_kernel_fp(void) { #ifdef CONFIG_SMP if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) giveup_fpu(current); else giveup_fpu(NULL); /* just enables FP for kernel */ #else giveup_fpu(last_task_used_math); #endif /* CONFIG_SMP */ } int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs) { if (regs->msr & MSR_FP) giveup_fpu(current); memcpy(fpregs, ¤t->thread.fpr[0], sizeof(*fpregs)); return 1; } #ifdef CONFIG_ALTIVEC int dump_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs) { if (regs->msr & MSR_VEC) giveup_altivec(current); memcpy(vrregs, ¤t->thread.vr[0], sizeof(*vrregs)); return 1; } void enable_kernel_altivec(void) { #ifdef CONFIG_SMP if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) giveup_altivec(current); else giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ #else giveup_altivec(last_task_used_altivec); #endif /* __SMP __ */ } #endif /* CONFIG_ALTIVEC */ void _switch_to(struct task_struct *prev, struct task_struct *new, struct task_struct **last) { struct thread_struct *new_thread, *old_thread; unsigned long s; __save_flags(s); __cli(); #ifdef SHOW_TASK_SWITCHES printk("%s/%d -> %s/%d NIP %08lx cpu %d root %x/%x\n", prev->comm,prev->pid, new->comm,new->pid,new->thread.regs->nip,new->processor, new->fs->root,prev->fs->root); #endif #ifdef CONFIG_SMP /* avoid complexity of lazy save/restore of fpu * by just saving it every time we switch out if * this task used the fpu during the last quantum. * * If it tries to use the fpu again, it'll trap and * reload its fp regs. So we don't have to do a restore * every switch, just a save. * -- Cort */ if ( prev->thread.regs && (prev->thread.regs->msr & MSR_FP) ) giveup_fpu(prev); #ifdef CONFIG_ALTIVEC /* * If the previous thread used altivec in the last quantum * (thus changing altivec regs) then save them. * We used to check the VRSAVE register but not all apps * set it, so we don't rely on it now (and in fact we need * to save & restore VSCR even if VRSAVE == 0). -- paulus * * On SMP we always save/restore altivec regs just to avoid the * complexity of changing processors. * -- Cort */ if ((prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))) giveup_altivec(prev); #endif /* CONFIG_ALTIVEC */ /* prev->last_processor = prev->processor; */ current_set[smp_processor_id()].task = new; #endif /* CONFIG_SMP */ new_thread = &new->thread; old_thread = ¤t->thread; *last = _switch(old_thread, new_thread); __restore_flags(s); } void show_regs(struct pt_regs * regs) { int i; printk("NIP: %016lX XER: %016lX LR: %016lX REGS: %p TRAP: %04lx %s\n", regs->nip, regs->xer, regs->link, regs,regs->trap, print_tainted()); printk("MSR: %016lx EE: %01x PR: %01x FP: %01x ME: %01x IR/DR: %01x%01x\n", regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0, regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0, regs->msr&MSR_IR ? 1 : 0, regs->msr&MSR_DR ? 1 : 0); printk("TASK = %p[%d] '%s' ", current, current->pid, current->comm); printk("Last syscall: %ld ", current->thread.last_syscall); #ifndef CONFIG_SMP printk("\nlast math %p last altivec %p", last_task_used_math, last_task_used_altivec); #endif #ifdef CONFIG_SMP /* printk(" CPU: %d last CPU: %d", current->processor,current->last_processor); */ #endif /* CONFIG_SMP */ printk("\n"); for (i = 0; i < 32; i++) { long r; if ((i % 4) == 0) { printk("GPR%02d: ", i); } if ( __get_user(r, &(regs->gpr[i])) ) return; printk("%016lX ", r); if ((i % 4) == 3) { printk("\n"); } } } void exit_thread(void) { #ifndef CONFIG_SMP if (last_task_used_math == current) last_task_used_math = NULL; if (last_task_used_altivec == current) last_task_used_altivec = NULL; #endif } void flush_thread(void) { #ifndef CONFIG_SMP if (last_task_used_math == current) last_task_used_math = NULL; if (last_task_used_altivec == current) last_task_used_altivec = NULL; #endif } void release_thread(struct task_struct *t) { } /* * Copy a thread.. */ int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, unsigned long unused, struct task_struct * p, struct pt_regs * regs) { unsigned long msr; struct pt_regs * childregs, *kregs; extern void ret_from_fork(void); /* Copy registers */ childregs = ((struct pt_regs *) ((unsigned long)p + sizeof(union task_union) - STACK_FRAME_OVERHEAD)) - 2; *childregs = *regs; childregs->gpr[3] = 0; /* Result from fork() */ p->thread.regs = childregs; p->thread.ksp = (unsigned long) childregs - STACK_FRAME_OVERHEAD; p->thread.ksp -= sizeof(struct pt_regs ) + STACK_FRAME_OVERHEAD; kregs = (struct pt_regs *)(p->thread.ksp + STACK_FRAME_OVERHEAD); /* The PPC64 compiler makes use of a TOC to contain function * pointers. The function (ret_from_except) is actually a pointer * to the TOC entry. The first entry is a pointer to the actual * function. */ kregs->nip = *((unsigned long *)ret_from_fork); asm volatile("mfmsr %0" : "=r" (msr):); kregs->msr = msr; kregs->gpr[1] = (unsigned long)childregs - STACK_FRAME_OVERHEAD; kregs->gpr[2] = (((unsigned long)&__toc_start) + 0x8000); if (usp >= (unsigned long) regs) { /* Stack is in kernel space - must adjust */ childregs->gpr[1] = (unsigned long)(childregs + 1); *((unsigned long *) childregs->gpr[1]) = 0; } else { /* Provided stack is in user space */ childregs->gpr[1] = usp; } p->thread.last_syscall = -1; /* * copy fpu info - assume lazy fpu switch now always * -- Cort */ if (regs->msr & MSR_FP) { giveup_fpu(current); childregs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); } memcpy(&p->thread.fpr, ¤t->thread.fpr, sizeof(p->thread.fpr)); p->thread.fpscr = current->thread.fpscr; p->thread.fpexc_mode = current->thread.fpexc_mode; #ifdef CONFIG_ALTIVEC /* * copy altiVec info - assume lazy altiVec switch * - kumar */ if (regs->msr & MSR_VEC) giveup_altivec(current); memcpy(&p->thread.vr, ¤t->thread.vr, sizeof(p->thread.vr)); p->thread.vscr = current->thread.vscr; childregs->msr &= ~MSR_VEC; #endif /* CONFIG_ALTIVEC */ return 0; } /* * Set up a thread for executing a new program */ void start_thread(struct pt_regs *regs, unsigned long fdptr, unsigned long sp) { unsigned long entry, toc, load_addr = regs->gpr[2]; /* fdptr is a relocated pointer to the function descriptor for * the elf _start routine. The first entry in the function * descriptor is the entry address of _start and the second * entry is the TOC value we need to use. */ set_fs(USER_DS); __get_user(entry, (unsigned long *)fdptr); __get_user(toc, (unsigned long *)fdptr+1); /* Check whether the e_entry function descriptor entries * need to be relocated before we can use them. */ if ( load_addr != 0 ) { entry += load_addr; toc += load_addr; } regs->nip = entry; regs->gpr[1] = sp; regs->gpr[2] = toc; regs->msr = MSR_USER64; #ifndef CONFIG_SMP if (last_task_used_math == current) last_task_used_math = 0; if (last_task_used_altivec == current) last_task_used_altivec = 0; #endif /* CONFIG_SMP */ memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); current->thread.fpscr = 0; #ifdef CONFIG_ALTIVEC memset(¤t->thread.vr[0], 0,offsetof(struct thread_struct,vrsave[2])- offsetof(struct thread_struct,vr[0])); current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ #endif /* CONFIG_ALTIVEC */ } # define PR_FP_EXC_DISABLED 0 /* FP exceptions disabled */ # define PR_FP_EXC_NONRECOV 1 /* async non-recoverable exc. mode */ # define PR_FP_EXC_ASYNC 2 /* async recoverable exception mode */ # define PR_FP_EXC_PRECISE 3 /* precise exception mode */ int set_fpexc_mode(struct task_struct *tsk, unsigned int val) { struct pt_regs *regs = tsk->thread.regs; if (val > PR_FP_EXC_PRECISE) return -EINVAL; tsk->thread.fpexc_mode = __pack_fe01(val); if (regs != NULL && (regs->msr & MSR_FP) != 0) regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) | tsk->thread.fpexc_mode; return 0; } int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) { unsigned int val; val = __unpack_fe01(tsk->thread.fpexc_mode); return put_user(val, (unsigned int *) adr); } int sys_clone(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs) { return do_fork(p1, regs->gpr[1], regs, 0); } int sys_fork(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs) { return do_fork(SIGCHLD, regs->gpr[1], regs, 0); } int sys_vfork(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs) { return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], regs, 0); } int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4, unsigned long a5, struct pt_regs *regs) { int error; char * filename; filename = getname((char *) a0); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; if (regs->msr & MSR_FP) giveup_fpu(current); #ifdef CONFIG_ALTIVEC if (regs->msr & MSR_VEC) giveup_altivec(current); #endif /* CONFIG_ALTIVEC */ error = do_execve(filename, (char **) a1, (char **) a2, regs); if (error == 0) current->ptrace &= ~PT_DTRACE; putname(filename); out: return error; } struct task_struct * alloc_task_struct(void) { struct task_struct * new_task_ptr; new_task_ptr = ((struct task_struct *) __get_free_pages(GFP_KERNEL, get_order(THREAD_SIZE))); return new_task_ptr; } void free_task_struct(struct task_struct * task_ptr) { free_pages((unsigned long)(task_ptr), get_order(THREAD_SIZE)); } void initialize_paca_hardware_interrupt_stack(void) { extern struct systemcfg *systemcfg; int i; unsigned long stack; unsigned long end_of_stack =0; for (i=1; i < systemcfg->processorCount; i++) { /* Carve out storage for the hardware interrupt stack */ stack = __get_free_pages(GFP_KERNEL, get_order(8*PAGE_SIZE)); if ( !stack ) { printk("ERROR, cannot find space for hardware stack.\n"); panic(" no hardware stack "); } /* Store the stack value in the PACA for the processor */ paca[i].xHrdIntStack = stack + (8*PAGE_SIZE) - STACK_FRAME_OVERHEAD; paca[i].xHrdIntCount = 0; } /* * __get_free_pages() might give us a page > KERNBASE+256M which * is mapped with large ptes so we can't set up the guard page. */ if (cur_cpu_spec->cpu_features & CPU_FTR_16M_PAGE) return; for (i=0; i < systemcfg->processorCount; i++) { /* set page at the top of stack to be protected - prevent overflow */ end_of_stack = paca[i].xHrdIntStack - (8*PAGE_SIZE - STACK_FRAME_OVERHEAD); ppc_md.hpte_updateboltedpp(PP_RXRX,end_of_stack); } } extern char _stext[], _etext[]; char * ppc_find_proc_name( unsigned * p, char * buf, unsigned buflen ) { unsigned long tb_flags; unsigned short name_len; unsigned long tb_start, code_start, code_ptr, code_offset; unsigned code_len; strcpy( buf, "Unknown" ); code_ptr = (unsigned long)p; code_offset = 0; if ( ( (unsigned long)p >= (unsigned long)_stext ) && ( (unsigned long)p <= (unsigned long)_etext ) ) { while ( (unsigned long)p <= (unsigned long)_etext ) { if ( *p == 0 ) { tb_start = (unsigned long)p; ++p; /* Point to traceback flags */ tb_flags = *((unsigned long *)p); p += 2; /* Skip over traceback flags */ if ( tb_flags & TB_NAME_PRESENT ) { if ( tb_flags & TB_PARMINFO ) ++p; /* skip over parminfo data */ if ( tb_flags & TB_HAS_TBOFF ) { code_len = *p; /* get code length */ code_start = tb_start - code_len; code_offset = code_ptr - code_start + 1; if ( code_offset > 0x100000 ) break; ++p; /* skip over code size */ } name_len = *((unsigned short *)p); if ( name_len > (buflen-20) ) name_len = buflen-20; memcpy( buf, ((char *)p)+2, name_len ); buf[name_len] = 0; if ( code_offset ) sprintf( buf+name_len, "+0x%lx", code_offset-1 ); } break; } ++p; } } return buf; } void print_backtrace(unsigned long *sp) { int cnt = 0; unsigned long i; char name_buf[256]; printk("Call backtrace: \n"); while (sp) { if (__get_user(i, &sp[2])) break; printk("%016lX ", i); printk("%s\n", ppc_find_proc_name((unsigned *)i, name_buf, 256)); if (cnt > 32) break; if (__get_user(sp, (unsigned long **)sp)) break; } printk("\n"); } /* * These bracket the sleeping functions.. */ extern void scheduling_functions_start_here(void); extern void scheduling_functions_end_here(void); #define first_sched (*(unsigned long *)scheduling_functions_start_here) #define last_sched (*(unsigned long *)scheduling_functions_end_here) unsigned long get_wchan(struct task_struct *p) { unsigned long ip, sp; unsigned long stack_page = (unsigned long)p; int count = 0; if (!p || p == current || p->state == TASK_RUNNING) return 0; sp = p->thread.ksp; do { sp = *(unsigned long *)sp; if (sp < (stack_page + (2 * PAGE_SIZE)) || sp >= (stack_page + THREAD_SIZE)) return 0; if (count > 0) { ip = *(unsigned long *)(sp + 16); /* * XXX we mask the upper 32 bits until procps * gets fixed. */ if (ip < first_sched || ip >= last_sched) return (ip); } } while (count++ < 16); return 0; } void show_trace_task(struct task_struct *p) { unsigned long ip, sp; unsigned long stack_page = (unsigned long)p; int count = 0; if (!p) return; printk("Call Trace: "); sp = p->thread.ksp; do { sp = *(unsigned long *)sp; if (sp < (stack_page + (2 * PAGE_SIZE)) || sp >= (stack_page + THREAD_SIZE)) break; if (count > 0) { ip = *(unsigned long *)(sp + 16); printk("[%016lx] ", ip); } } while (count++ < 16); printk("\n"); }