/* * sys_ppc32.c: Conversion between 32bit and 64bit native syscalls. * * Copyright (C) 2001 IBM * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) * * These routines maintain argument size conversion between 32bit and 64bit * environment. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern unsigned long wall_jiffies; #define USEC_PER_SEC (1000000) extern asmlinkage long sys_utime(char * filename, struct utimbuf * times); struct utimbuf32 { __kernel_time_t32 actime, modtime; }; asmlinkage long sys32_utime(char * filename, struct utimbuf32 *times) { struct utimbuf t; mm_segment_t old_fs; int ret; char *filenam; PPCDBG(PPCDBG_SYS32NI, "sys32_utime - running - filename=%s, times=%p - pid=%ld, comm=%s \n", filename, times, current->pid, current->comm); if (!times) return sys_utime(filename, NULL); if (get_user(t.actime, ×->actime) || __get_user(t.modtime, ×->modtime)) return -EFAULT; filenam = getname(filename); ret = PTR_ERR(filenam); if (!IS_ERR(filenam)) { old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_utime(filenam, &t); set_fs (old_fs); putname (filenam); } return ret; } asmlinkage int sys32_ustat(__kernel_dev_t32 dev, struct ustat32 * ubuf) { struct super_block *s; struct ustat32 tmp; struct statfs sbuf; int err = -EINVAL; s = get_super(to_kdev_t(dev)); if (s == NULL) goto out; err = vfs_statfs(s, &sbuf); drop_super(s); if (err) goto out; memset(&tmp,0,sizeof(struct ustat)); tmp.f_tfree = sbuf.f_bfree; tmp.f_tinode = sbuf.f_ffree; err = copy_to_user(ubuf, &tmp, sizeof(struct ustat32)) ? -EFAULT : 0; out: return err; } struct iovec32 { u32 iov_base; __kernel_size_t32 iov_len; }; typedef ssize_t (*IO_fn_t)(struct file *, char *, size_t, loff_t *); typedef __kernel_ssize_t32 ssize_t32; static long do_readv_writev32(int type, struct file *file, const struct iovec32 *vector, u32 count) { unsigned long tot_len; struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov=iovstack, *ivp; struct inode *inode; long retval, i; IO_fn_t fn; /* First get the "struct iovec" from user memory and * verify all the pointers */ if (!count) return 0; if (count > UIO_MAXIOV) return -EINVAL; if(verify_area(VERIFY_READ, vector, sizeof(struct iovec32)*count)) return -EFAULT; if (count > UIO_FASTIOV) { iov = kmalloc(count*sizeof(struct iovec), GFP_KERNEL); if (!iov) return -ENOMEM; } tot_len = 0; i = count; ivp = iov; while(i > 0) { u32 len; u32 buf; __get_user(len, &vector->iov_len); __get_user(buf, &vector->iov_base); tot_len += len; ivp->iov_base = (void *)A(buf); ivp->iov_len = (__kernel_size_t) len; vector++; ivp++; if ((len < 0) || (tot_len != (ssize_t32)tot_len)) { if (iov != iovstack) kfree(iov); return -EINVAL; } i--; } inode = file->f_dentry->d_inode; /* VERIFY_WRITE actually means a read, as we write to user space */ retval = locks_verify_area((type == VERIFY_WRITE ? FLOCK_VERIFY_READ : FLOCK_VERIFY_WRITE), inode, file, file->f_pos, tot_len); if (retval) { if (iov != iovstack) kfree(iov); return retval; } /* Then do the actual IO. Note that sockets need to be handled * specially as they have atomicity guarantees and can handle * iovec's natively */ if (inode->i_sock) { int err; err = sock_readv_writev(type, inode, file, iov, count, tot_len); if (iov != iovstack) kfree(iov); return err; } if (!file->f_op) { if (iov != iovstack) kfree(iov); return -EINVAL; } /* VERIFY_WRITE actually means a read, as we write to user space */ fn = file->f_op->read; if (type == VERIFY_READ) fn = (IO_fn_t) file->f_op->write; ivp = iov; while (count > 0) { void * base; int len, nr; base = ivp->iov_base; len = ivp->iov_len; ivp++; count--; nr = fn(file, base, len, &file->f_pos); if (nr < 0) { if (retval) break; retval = nr; break; } retval += nr; if (nr != len) break; } if (iov != iovstack) kfree(iov); return retval; } asmlinkage long sys32_readv(u32 fd, struct iovec32 *vector, u32 count) { struct file *file; long ret = -EBADF; PPCDBG(PPCDBG_SYS32, "sys32_readv - entered - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); file = fget(fd); if(!file) goto bad_file; if (file->f_op && (file->f_mode & FMODE_READ) && (file->f_op->readv || file->f_op->read)) ret = do_readv_writev32(VERIFY_WRITE, file, vector, count); fput(file); bad_file: PPCDBG(PPCDBG_SYS32, "sys32_readv - exited - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); return ret; } asmlinkage long sys32_writev(u32 fd, struct iovec32 *vector, u32 count) { struct file *file; int ret = -EBADF; PPCDBG(PPCDBG_SYS32, "sys32_writev - entered - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); file = fget(fd); if(!file) goto bad_file; if (file->f_op && (file->f_mode & FMODE_WRITE) && (file->f_op->writev || file->f_op->write)) ret = do_readv_writev32(VERIFY_READ, file, vector, count); fput(file); bad_file: PPCDBG(PPCDBG_SYS32, "sys32_writev - exited - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); return ret; } static inline int get_flock(struct flock *kfl, struct flock32 *ufl) { int err; err = get_user(kfl->l_type, &ufl->l_type); err |= __get_user(kfl->l_whence, &ufl->l_whence); err |= __get_user(kfl->l_start, &ufl->l_start); err |= __get_user(kfl->l_len, &ufl->l_len); err |= __get_user(kfl->l_pid, &ufl->l_pid); return err; } static inline int put_flock(struct flock *kfl, struct flock32 *ufl) { int err; err = __put_user(kfl->l_type, &ufl->l_type); err |= __put_user(kfl->l_whence, &ufl->l_whence); err |= __put_user(kfl->l_start, &ufl->l_start); err |= __put_user(kfl->l_len, &ufl->l_len); err |= __put_user(kfl->l_pid, &ufl->l_pid); return err; } extern asmlinkage long sys_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg); asmlinkage long sys32_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg) { switch (cmd) { case F_GETLK: case F_SETLK: case F_SETLKW: { struct flock f; mm_segment_t old_fs; long ret; if(get_flock(&f, (struct flock32 *)arg)) return -EFAULT; old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_fcntl(fd, cmd, (unsigned long)&f); set_fs (old_fs); if(put_flock(&f, (struct flock32 *)arg)) return -EFAULT; return ret; } default: return sys_fcntl(fd, cmd, (unsigned long)arg); } } struct ncp_mount_data32 { int version; unsigned int ncp_fd; __kernel_uid_t32 mounted_uid; __kernel_pid_t32 wdog_pid; unsigned char mounted_vol[NCP_VOLNAME_LEN + 1]; unsigned int time_out; unsigned int retry_count; unsigned int flags; __kernel_uid_t32 uid; __kernel_gid_t32 gid; __kernel_mode_t32 file_mode; __kernel_mode_t32 dir_mode; }; static void *do_ncp_super_data_conv(void *raw_data) { struct ncp_mount_data *n = (struct ncp_mount_data *)raw_data; struct ncp_mount_data32 *n32 = (struct ncp_mount_data32 *)raw_data; n->dir_mode = n32->dir_mode; n->file_mode = n32->file_mode; n->gid = n32->gid; n->uid = n32->uid; memmove (n->mounted_vol, n32->mounted_vol, (sizeof (n32->mounted_vol) + 3 * sizeof (unsigned int))); n->wdog_pid = n32->wdog_pid; n->mounted_uid = n32->mounted_uid; return raw_data; } struct smb_mount_data32 { int version; __kernel_uid_t32 mounted_uid; __kernel_uid_t32 uid; __kernel_gid_t32 gid; __kernel_mode_t32 file_mode; __kernel_mode_t32 dir_mode; }; static void *do_smb_super_data_conv(void *raw_data) { struct smb_mount_data *s = (struct smb_mount_data *)raw_data; struct smb_mount_data32 *s32 = (struct smb_mount_data32 *)raw_data; s->version = s32->version; s->mounted_uid = s32->mounted_uid; s->uid = s32->uid; s->gid = s32->gid; s->file_mode = s32->file_mode; s->dir_mode = s32->dir_mode; return raw_data; } static int copy_mount_stuff_to_kernel(const void *user, unsigned long *kernel) { int i; unsigned long page; struct vm_area_struct *vma; *kernel = 0; if(!user) return 0; vma = find_vma(current->mm, (unsigned long)user); if(!vma || (unsigned long)user < vma->vm_start) return -EFAULT; if(!(vma->vm_flags & VM_READ)) return -EFAULT; i = vma->vm_end - (unsigned long) user; if(PAGE_SIZE <= (unsigned long) i) i = PAGE_SIZE - 1; if(!(page = __get_free_page(GFP_KERNEL))) return -ENOMEM; if(copy_from_user((void *) page, user, i)) { free_page(page); return -EFAULT; } *kernel = page; return 0; } #define SMBFS_NAME "smbfs" #define NCPFS_NAME "ncpfs" asmlinkage long sys32_mount(char *dev_name, char *dir_name, char *type, unsigned long new_flags, u32 data) { unsigned long type_page = 0; unsigned long data_page = 0; unsigned long dev_page = 0; unsigned long dir_page = 0; int err, is_smb, is_ncp; PPCDBG(PPCDBG_SYS32, "sys32_mount - entered - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); is_smb = is_ncp = 0; err = copy_mount_stuff_to_kernel((const void *)type, &type_page); if (err) goto out; if (!type_page) { err = -EINVAL; goto out; } is_smb = !strcmp((char *)type_page, SMBFS_NAME); is_ncp = !strcmp((char *)type_page, NCPFS_NAME); err = copy_mount_stuff_to_kernel((const void *)AA(data), &data_page); if (err) goto type_out; err = copy_mount_stuff_to_kernel(dev_name, &dev_page); if (err) goto data_out; err = copy_mount_stuff_to_kernel(dir_name, &dir_page); if (err) goto dev_out; if (!is_smb && !is_ncp) { lock_kernel(); err = do_mount((char*)dev_page, (char*)dir_page, (char*)type_page, new_flags, (char*)data_page); unlock_kernel(); } else { if (is_ncp) do_ncp_super_data_conv((void *)data_page); else do_smb_super_data_conv((void *)data_page); lock_kernel(); err = do_mount((char*)dev_page, (char*)dir_page, (char*)type_page, new_flags, (char*)data_page); unlock_kernel(); } free_page(dir_page); dev_out: free_page(dev_page); data_out: free_page(data_page); type_out: free_page(type_page); out: PPCDBG(PPCDBG_SYS32, "sys32_mount - exited - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); return err; } struct user_dqblk32 { __u32 dqb_bhardlimit; __u32 dqb_bsoftlimit; __u32 dqb_curblocks; __u32 dqb_ihardlimit; __u32 dqb_isoftlimit; __u32 dqb_curinodes; __kernel_time_t32 dqb_btime; __kernel_time_t32 dqb_itime; }; extern asmlinkage long sys_quotactl(unsigned int cmd, const char *special, qid_t id, caddr_t addr); /* Note: it is necessary to treat cmd and id as unsigned ints, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_quotactl(u32 cmd_parm, const char *special, u32 id_parm, caddr_t addr) { unsigned int cmd = cmd_parm; qid_t id = (qid_t)id_parm; unsigned int cmds = cmd >> SUBCMDSHIFT; int err; struct v1c_mem_dqblk d; mm_segment_t old_fs; char *spec; PPCDBG(PPCDBG_SYS32, "sys32_quotactl - entered - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); switch (cmds) { case Q_V1_GETQUOTA: break; case Q_V1_SETQUOTA: case Q_V1_SETUSE: case Q_V1_SETQLIM: if (copy_from_user(&d, addr, sizeof(struct user_dqblk32))) return -EFAULT; d.dqb_itime = ((struct user_dqblk32 *)&d)->dqb_itime; d.dqb_btime = ((struct user_dqblk32 *)&d)->dqb_btime; break; default: return sys_quotactl(cmd, special, id, addr); } spec = getname(special); err = PTR_ERR(spec); if (IS_ERR(spec)) return err; old_fs = get_fs(); set_fs (KERNEL_DS); err = sys_quotactl(cmd, (const char *)spec, id, (caddr_t)&d); set_fs (old_fs); putname (spec); if (cmds == Q_V1_GETQUOTA) { __kernel_time_t b = d.dqb_btime, i = d.dqb_itime; ((struct user_dqblk32 *)&d)->dqb_itime = i; ((struct user_dqblk32 *)&d)->dqb_btime = b; if (copy_to_user(addr, &d, sizeof(struct user_dqblk32))) return -EFAULT; } PPCDBG(PPCDBG_SYS32, "sys32_quotactl - exited - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); return err; } /* readdir & getdents */ #define NAME_OFFSET(de) ((int) ((de)->d_name - (char *) (de))) #define ROUND_UP(x) (((x)+sizeof(u32)-1) & ~(sizeof(u32)-1)) struct old_linux_dirent32 { u32 d_ino; u32 d_offset; unsigned short d_namlen; char d_name[1]; }; struct readdir_callback32 { struct old_linux_dirent32 * dirent; int count; }; static int fillonedir(void * __buf, const char * name, int namlen, off_t offset, ino_t ino, unsigned int d_type) { struct readdir_callback32 * buf = (struct readdir_callback32 *) __buf; struct old_linux_dirent32 * dirent; if (buf->count) return -EINVAL; buf->count++; dirent = buf->dirent; put_user(ino, &dirent->d_ino); put_user(offset, &dirent->d_offset); put_user(namlen, &dirent->d_namlen); copy_to_user(dirent->d_name, name, namlen); put_user(0, dirent->d_name + namlen); return 0; } asmlinkage int old32_readdir(unsigned int fd, struct old_linux_dirent32 *dirent, unsigned int count) { int error = -EBADF; struct file * file; struct readdir_callback32 buf; file = fget(fd); if (!file) goto out; buf.count = 0; buf.dirent = dirent; error = vfs_readdir(file, (filldir_t)fillonedir, &buf); if (error < 0) goto out_putf; error = buf.count; out_putf: fput(file); out: return error; } #if 0 struct linux_dirent32 { u32 d_ino; u32 d_off; unsigned short d_reclen; char d_name[1]; }; #else struct linux_dirent32 { u32 d_ino; u32 d_off; unsigned short d_reclen; /* unsigned char d_type; */ char d_name[256]; }; #endif struct getdents_callback32 { struct linux_dirent32 * current_dir; struct linux_dirent32 * previous; int count; int error; }; static int filldir(void * __buf, const char * name, int namlen, off_t offset, ino_t ino, unsigned int d_type) { struct linux_dirent32 * dirent; struct getdents_callback32 * buf = (struct getdents_callback32 *) __buf; int reclen = ROUND_UP(NAME_OFFSET(dirent) + namlen + 1); buf->error = -EINVAL; /* only used if we fail.. */ if (reclen > buf->count) return -EINVAL; dirent = buf->previous; if (dirent) put_user(offset, &dirent->d_off); dirent = buf->current_dir; buf->previous = dirent; put_user(ino, &dirent->d_ino); put_user(reclen, &dirent->d_reclen); copy_to_user(dirent->d_name, name, namlen); put_user(0, dirent->d_name + namlen); ((char *) dirent) += reclen; buf->current_dir = dirent; buf->count -= reclen; return 0; } asmlinkage long sys32_getdents(unsigned int fd, struct linux_dirent32 *dirent, unsigned int count) { struct file * file; struct linux_dirent32 * lastdirent; struct getdents_callback32 buf; int error = -EBADF; PPCDBG(PPCDBG_SYS32NI, "sys32_getdents - running - fd=%x, pid=%ld, comm=%s \n", fd, current->pid, current->comm); file = fget(fd); if (!file) goto out; buf.current_dir = dirent; buf.previous = NULL; buf.count = count; buf.error = 0; error = vfs_readdir(file, (filldir_t)filldir, &buf); if (error < 0) goto out_putf; lastdirent = buf.previous; error = buf.error; if(lastdirent) { put_user(file->f_pos, &lastdirent->d_off); error = count - buf.count; } out_putf: fput(file); out: return error; } /* end of readdir & getdents */ /* 32-bit timeval and related flotsam. */ struct timeval32 { int tv_sec, tv_usec; }; struct itimerval32 { struct timeval32 it_interval; struct timeval32 it_value; }; /* * Ooo, nasty. We need here to frob 32-bit unsigned longs to * 64-bit unsigned longs. */ static inline int get_fd_set32(unsigned long n, unsigned long *fdset, u32 *ufdset) { if (ufdset) { unsigned long odd; if (verify_area(VERIFY_WRITE, ufdset, n*sizeof(u32))) return -EFAULT; odd = n & 1UL; n &= ~1UL; while (n) { unsigned long h, l; __get_user(l, ufdset); __get_user(h, ufdset+1); ufdset += 2; *fdset++ = h << 32 | l; n -= 2; } if (odd) __get_user(*fdset, ufdset); } else { /* Tricky, must clear full unsigned long in the * kernel fdset at the end, this makes sure that * actually happens. */ memset(fdset, 0, ((n + 1) & ~1)*sizeof(u32)); } return 0; } static inline void set_fd_set32(unsigned long n, u32 *ufdset, unsigned long *fdset) { unsigned long odd; if (!ufdset) return; odd = n & 1UL; n &= ~1UL; while (n) { unsigned long h, l; l = *fdset++; h = l >> 32; __put_user(l, ufdset); __put_user(h, ufdset+1); ufdset += 2; n -= 2; } if (odd) __put_user(*fdset, ufdset); } #define MAX_SELECT_SECONDS ((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1) asmlinkage long sys32_select(int n, u32 *inp, u32 *outp, u32 *exp, u32 tvp_x) { fd_set_bits fds; struct timeval32 *tvp = (struct timeval32 *)AA(tvp_x); char *bits; unsigned long nn; long timeout; int ret, size; PPCDBG(PPCDBG_SYS32X, "sys32_select - entered - n=%x, inp=%p, outp=%p - pid=%ld comm=%s \n", n, inp, outp, current->pid, current->comm); timeout = MAX_SCHEDULE_TIMEOUT; if (tvp) { time_t sec, usec; if ((ret = verify_area(VERIFY_READ, tvp, sizeof(*tvp))) || (ret = __get_user(sec, &tvp->tv_sec)) || (ret = __get_user(usec, &tvp->tv_usec))) goto out_nofds; ret = -EINVAL; if(sec < 0 || usec < 0) goto out_nofds; if ((unsigned long) sec < MAX_SELECT_SECONDS) { timeout = (usec + 1000000/HZ - 1) / (1000000/HZ); timeout += sec * (unsigned long) HZ; } } ret = -EINVAL; if (n < 0) goto out_nofds; if (n > current->files->max_fdset) n = current->files->max_fdset; /* * We need 6 bitmaps (in/out/ex for both incoming and outgoing), * since we used fdset we need to allocate memory in units of * long-words. */ ret = -ENOMEM; size = FDS_BYTES(n); bits = kmalloc(6 * size, GFP_KERNEL); if (!bits) goto out_nofds; fds.in = (unsigned long *) bits; fds.out = (unsigned long *) (bits + size); fds.ex = (unsigned long *) (bits + 2*size); fds.res_in = (unsigned long *) (bits + 3*size); fds.res_out = (unsigned long *) (bits + 4*size); fds.res_ex = (unsigned long *) (bits + 5*size); nn = (n + 8*sizeof(u32) - 1) / (8*sizeof(u32)); if ((ret = get_fd_set32(nn, fds.in, inp)) || (ret = get_fd_set32(nn, fds.out, outp)) || (ret = get_fd_set32(nn, fds.ex, exp))) goto out; zero_fd_set(n, fds.res_in); zero_fd_set(n, fds.res_out); zero_fd_set(n, fds.res_ex); ret = do_select(n, &fds, &timeout); if (tvp && !(current->personality & STICKY_TIMEOUTS)) { time_t sec = 0, usec = 0; if (timeout) { sec = timeout / HZ; usec = timeout % HZ; usec *= (1000000/HZ); } put_user(sec, &tvp->tv_sec); put_user(usec, &tvp->tv_usec); } if (ret < 0) goto out; if (!ret) { ret = -ERESTARTNOHAND; if (signal_pending(current)) goto out; ret = 0; } set_fd_set32(nn, inp, fds.res_in); set_fd_set32(nn, outp, fds.res_out); set_fd_set32(nn, exp, fds.res_ex); out: kfree(bits); out_nofds: PPCDBG(PPCDBG_SYS32X, "sys32_select - exited - pid=%ld, comm=%s \n", current->pid, current->comm); return ret; } /* Note: it is necessary to treat n as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage int ppc32_select(u32 n, u32* inp, u32* outp, u32* exp, u32 tvp_x) { return sys32_select((int)n, inp, outp, exp, tvp_x); } static int cp_new_stat32(struct inode *inode, struct stat32 *statbuf) { unsigned long ino, blksize, blocks; kdev_t dev, rdev; umode_t mode; nlink_t nlink; uid_t uid; gid_t gid; off_t size; time_t atime, mtime, ctime; int err; /* Stream the loads of inode data into the load buffer, * then we push it all into the store buffer below. This * should give optimal cache performance. */ ino = inode->i_ino; dev = inode->i_dev; mode = inode->i_mode; nlink = inode->i_nlink; uid = inode->i_uid; gid = inode->i_gid; rdev = inode->i_rdev; size = inode->i_size; atime = inode->i_atime; mtime = inode->i_mtime; ctime = inode->i_ctime; blksize = inode->i_blksize; blocks = inode->i_blocks; err = put_user(kdev_t_to_nr(dev), &statbuf->st_dev); err |= put_user(ino, &statbuf->st_ino); err |= put_user(mode, &statbuf->st_mode); err |= put_user(nlink, &statbuf->st_nlink); err |= put_user(uid, &statbuf->st_uid); err |= put_user(gid, &statbuf->st_gid); err |= put_user(kdev_t_to_nr(rdev), &statbuf->st_rdev); err |= put_user(size, &statbuf->st_size); err |= put_user(atime, &statbuf->st_atime); err |= put_user(0, &statbuf->__unused1); err |= put_user(mtime, &statbuf->st_mtime); err |= put_user(0, &statbuf->__unused2); err |= put_user(ctime, &statbuf->st_ctime); err |= put_user(0, &statbuf->__unused3); if (blksize) { err |= put_user(blksize, &statbuf->st_blksize); err |= put_user(blocks, &statbuf->st_blocks); } else { unsigned int tmp_blocks; #define D_B 7 #define I_B (BLOCK_SIZE / sizeof(unsigned short)) tmp_blocks = (size + BLOCK_SIZE - 1) / BLOCK_SIZE; if (tmp_blocks > D_B) { unsigned int indirect; indirect = (tmp_blocks - D_B + I_B - 1) / I_B; tmp_blocks += indirect; if (indirect > 1) { indirect = (indirect - 1 + I_B - 1) / I_B; tmp_blocks += indirect; if (indirect > 1) tmp_blocks++; } } err |= put_user(BLOCK_SIZE, &statbuf->st_blksize); err |= put_user((BLOCK_SIZE / 512) * tmp_blocks, &statbuf->st_blocks); #undef D_B #undef I_B } err |= put_user(0, &statbuf->__unused4[0]); err |= put_user(0, &statbuf->__unused4[1]); return err; } static __inline__ int do_revalidate(struct dentry *dentry) { struct inode * inode = dentry->d_inode; if (inode->i_op && inode->i_op->revalidate) return inode->i_op->revalidate(dentry); return 0; } asmlinkage long sys32_newstat(char* filename, struct stat32* statbuf) { struct nameidata nd; int error; PPCDBG(PPCDBG_SYS32X, "sys32_newstat - running - filename=%s, statbuf=%p, pid=%ld, comm=%s\n", filename, statbuf, current->pid, current->comm); error = user_path_walk(filename, &nd); if (!error) { error = do_revalidate(nd.dentry); if (!error) error = cp_new_stat32(nd.dentry->d_inode, statbuf); path_release(&nd); } return error; } asmlinkage long sys32_newlstat(char * filename, struct stat32 *statbuf) { struct nameidata nd; int error; PPCDBG(PPCDBG_SYS32X, "sys32_newlstat - running - fn=%s, pid=%ld, comm=%s\n", filename, current->pid, current->comm); error = user_path_walk_link(filename, &nd); if (!error) { error = do_revalidate(nd.dentry); if (!error) error = cp_new_stat32(nd.dentry->d_inode, statbuf); path_release(&nd); } return error; } asmlinkage long sys32_newfstat(unsigned int fd, struct stat32 *statbuf) { struct file *f; int err = -EBADF; PPCDBG(PPCDBG_SYS32X, "sys32_newfstat - running - fd=%x, pid=%ld, comm=%s\n", fd, current->pid, current->comm); f = fget(fd); if (f) { struct dentry * dentry = f->f_dentry; err = do_revalidate(dentry); if (!err) err = cp_new_stat32(dentry->d_inode, statbuf); fput(f); } return err; } static inline int put_statfs (struct statfs32 *ubuf, struct statfs *kbuf) { struct statfs32 tmp; memset(&tmp, 0, sizeof(tmp)); tmp.f_type = kbuf->f_type; tmp.f_bsize = kbuf->f_bsize; tmp.f_blocks = kbuf->f_blocks; tmp.f_bfree = kbuf->f_bfree; tmp.f_bavail = kbuf->f_bavail; tmp.f_files = kbuf->f_files; tmp.f_ffree = kbuf->f_ffree; tmp.f_namelen = kbuf->f_namelen; tmp.f_fsid.val[0] = kbuf->f_fsid.val[0]; tmp.f_fsid.val[1] = kbuf->f_fsid.val[1]; return copy_to_user(ubuf, &tmp, sizeof(tmp)) ? -EFAULT : 0; } extern asmlinkage int sys_statfs(const char * path, struct statfs * buf); asmlinkage long sys32_statfs(const char * path, struct statfs32 *buf) { int ret; struct statfs s; mm_segment_t old_fs = get_fs(); char *pth; PPCDBG(PPCDBG_SYS32X, "sys32_statfs - entered - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); pth = getname (path); ret = PTR_ERR(pth); if (!IS_ERR(pth)) { set_fs (KERNEL_DS); ret = sys_statfs((const char *)pth, &s); set_fs (old_fs); putname (pth); if (put_statfs(buf, &s)) return -EFAULT; } PPCDBG(PPCDBG_SYS32X, "sys32_statfs - exited - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); return ret; } extern asmlinkage long sys_fstatfs(unsigned int fd, struct statfs * buf); asmlinkage long sys32_fstatfs(unsigned int fd, struct statfs32 *buf) { int ret; struct statfs s; mm_segment_t old_fs = get_fs(); PPCDBG(PPCDBG_SYS32X, "sys32_fstatfs - entered - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); set_fs (KERNEL_DS); ret = sys_fstatfs(fd, &s); set_fs (old_fs); if (put_statfs(buf, &s)) return -EFAULT; PPCDBG(PPCDBG_SYS32X, "sys32_fstatfs - exited - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); return ret; } extern asmlinkage long sys_sysfs(int option, unsigned long arg1, unsigned long arg2); /* Note: it is necessary to treat option as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_sysfs(u32 option, u32 arg1, u32 arg2) { PPCDBG(PPCDBG_SYS32, "sys32_sysfs - running - pid=%ld, comm=%s\n", current->pid, current->comm); return sys_sysfs((int)option, arg1, arg2); } extern unsigned long do_mremap(unsigned long addr, unsigned long old_len, unsigned long new_len, unsigned long flags, unsigned long new_addr); asmlinkage unsigned long sys32_mremap(unsigned long addr, unsigned long old_len, unsigned long new_len, unsigned long flags, u32 __new_addr) { unsigned long ret = -EINVAL; unsigned long new_addr = AA(__new_addr); PPCDBG(PPCDBG_SYS32, "sys32_mremap - entered - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); if (old_len > 0xf0000000UL || new_len > 0xf0000000UL) goto out; if (addr > 0xf0000000UL - old_len) goto out; down_write(¤t->mm->mmap_sem); if (flags & MREMAP_FIXED) { if (new_addr > 0xf0000000UL - new_len) goto out_sem; } else if (addr > 0xf0000000UL - new_len) { ret = -ENOMEM; if (!(flags & MREMAP_MAYMOVE)) goto out_sem; new_addr = get_unmapped_area (NULL, addr, new_len, 0, 0); if (!new_addr) goto out_sem; flags |= MREMAP_FIXED; } ret = do_mremap(addr, old_len, new_len, flags, new_addr); out_sem: up_write(¤t->mm->mmap_sem); out: PPCDBG(PPCDBG_SYS32, "sys32_mremap - exited - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); return ret; } /* Handle adjtimex compatability. */ struct timex32 { u32 modes; s32 offset, freq, maxerror, esterror; s32 status, constant, precision, tolerance; struct timeval32 time; s32 tick; s32 ppsfreq, jitter, shift, stabil; s32 jitcnt, calcnt, errcnt, stbcnt; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; }; extern int do_adjtimex(struct timex *); extern void ppc_adjtimex(void); asmlinkage long sys32_adjtimex(struct timex32 *utp) { struct timex txc; int ret; PPCDBG(PPCDBG_SYS32, "sys32_adjtimex - running - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); memset(&txc, 0, sizeof(struct timex)); if(get_user(txc.modes, &utp->modes) || __get_user(txc.offset, &utp->offset) || __get_user(txc.freq, &utp->freq) || __get_user(txc.maxerror, &utp->maxerror) || __get_user(txc.esterror, &utp->esterror) || __get_user(txc.status, &utp->status) || __get_user(txc.constant, &utp->constant) || __get_user(txc.precision, &utp->precision) || __get_user(txc.tolerance, &utp->tolerance) || __get_user(txc.time.tv_sec, &utp->time.tv_sec) || __get_user(txc.time.tv_usec, &utp->time.tv_usec) || __get_user(txc.tick, &utp->tick) || __get_user(txc.ppsfreq, &utp->ppsfreq) || __get_user(txc.jitter, &utp->jitter) || __get_user(txc.shift, &utp->shift) || __get_user(txc.stabil, &utp->stabil) || __get_user(txc.jitcnt, &utp->jitcnt) || __get_user(txc.calcnt, &utp->calcnt) || __get_user(txc.errcnt, &utp->errcnt) || __get_user(txc.stbcnt, &utp->stbcnt)) return -EFAULT; ret = do_adjtimex(&txc); /* adjust the conversion of TB to time of day to track adjtimex */ ppc_adjtimex(); if(put_user(txc.modes, &utp->modes) || __put_user(txc.offset, &utp->offset) || __put_user(txc.freq, &utp->freq) || __put_user(txc.maxerror, &utp->maxerror) || __put_user(txc.esterror, &utp->esterror) || __put_user(txc.status, &utp->status) || __put_user(txc.constant, &utp->constant) || __put_user(txc.precision, &utp->precision) || __put_user(txc.tolerance, &utp->tolerance) || __put_user(txc.time.tv_sec, &utp->time.tv_sec) || __put_user(txc.time.tv_usec, &utp->time.tv_usec) || __put_user(txc.tick, &utp->tick) || __put_user(txc.ppsfreq, &utp->ppsfreq) || __put_user(txc.jitter, &utp->jitter) || __put_user(txc.shift, &utp->shift) || __put_user(txc.stabil, &utp->stabil) || __put_user(txc.jitcnt, &utp->jitcnt) || __put_user(txc.calcnt, &utp->calcnt) || __put_user(txc.errcnt, &utp->errcnt) || __put_user(txc.stbcnt, &utp->stbcnt)) ret = -EFAULT; return ret; } #ifdef CONFIG_MODULES extern asmlinkage unsigned long sys_create_module(const char *name_user, size_t size); asmlinkage unsigned long sys32_create_module(const char *name_user, __kernel_size_t32 size) { PPCDBG(PPCDBG_SYS32M, "sys32_create_module - running - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); return sys_create_module(name_user, (size_t)size); } extern asmlinkage long sys_init_module(const char *name_user, struct module *mod_user); asmlinkage long sys32_init_module(const char *name_user, struct module *mod_user) { PPCDBG(PPCDBG_SYS32, "sys32_init_module - running - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); return sys_init_module(name_user, mod_user); } extern asmlinkage long sys_delete_module(const char *name_user); asmlinkage long sys32_delete_module(const char *name_user) { PPCDBG(PPCDBG_SYS32, "sys32_delete_module - running - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); return sys_delete_module(name_user); } struct module_info32 { u32 addr; u32 size; u32 flags; s32 usecount; }; /* Query various bits about modules. */ static inline long get_mod_name(const char *user_name, char **buf) { unsigned long page; long retval; if ((unsigned long)user_name >= TASK_SIZE && !segment_eq(get_fs (), KERNEL_DS)) return -EFAULT; page = __get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; retval = strncpy_from_user((char *)page, user_name, PAGE_SIZE); if (retval > 0) { if (retval < PAGE_SIZE) { *buf = (char *)page; return retval; } retval = -ENAMETOOLONG; } else if (!retval) retval = -EINVAL; free_page(page); return retval; } static inline void put_mod_name(char *buf) { free_page((unsigned long)buf); } static __inline__ struct module *find_module(const char *name) { struct module *mod; for (mod = module_list; mod ; mod = mod->next) { if (mod->flags & MOD_DELETED) continue; if (!strcmp(mod->name, name)) break; } return mod; } static int qm_modules(char *buf, size_t bufsize, __kernel_size_t32 *ret) { struct module *mod; size_t nmod, space, len; nmod = space = 0; for (mod = module_list; mod->next != NULL; mod = mod->next, ++nmod) { len = strlen(mod->name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(buf, mod->name, len)) return -EFAULT; buf += len; bufsize -= len; space += len; } if (put_user(nmod, ret)) return -EFAULT; else return 0; calc_space_needed: space += len; while ((mod = mod->next)->next != NULL) space += strlen(mod->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static int qm_deps(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { size_t i, space, len; if (mod->next == NULL) return -EINVAL; if (!MOD_CAN_QUERY(mod)) return put_user(0, ret); space = 0; for (i = 0; i < mod->ndeps; ++i) { const char *dep_name = mod->deps[i].dep->name; len = strlen(dep_name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(buf, dep_name, len)) return -EFAULT; buf += len; bufsize -= len; space += len; } return put_user(i, ret); calc_space_needed: space += len; while (++i < mod->ndeps) space += strlen(mod->deps[i].dep->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static int qm_refs(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { size_t nrefs, space, len; struct module_ref *ref; if (mod->next == NULL) return -EINVAL; if (!MOD_CAN_QUERY(mod)) if (put_user(0, ret)) return -EFAULT; else return 0; space = 0; for (nrefs = 0, ref = mod->refs; ref ; ++nrefs, ref = ref->next_ref) { const char *ref_name = ref->ref->name; len = strlen(ref_name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(buf, ref_name, len)) return -EFAULT; buf += len; bufsize -= len; space += len; } if (put_user(nrefs, ret)) return -EFAULT; else return 0; calc_space_needed: space += len; while ((ref = ref->next_ref) != NULL) space += strlen(ref->ref->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static inline int qm_symbols(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { size_t i, space, len; struct module_symbol *s; char *strings; unsigned *vals; if (!MOD_CAN_QUERY(mod)) if (put_user(0, ret)) return -EFAULT; else return 0; space = mod->nsyms * 2*sizeof(u32); i = len = 0; s = mod->syms; if (space > bufsize) goto calc_space_needed; if (!access_ok(VERIFY_WRITE, buf, space)) return -EFAULT; bufsize -= space; vals = (unsigned *)buf; strings = buf+space; for (; i < mod->nsyms ; ++i, ++s, vals += 2) { len = strlen(s->name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(strings, s->name, len) || __put_user(s->value, vals+0) || __put_user(space, vals+1)) return -EFAULT; strings += len; bufsize -= len; space += len; } if (put_user(i, ret)) return -EFAULT; else return 0; calc_space_needed: for (; i < mod->nsyms; ++i, ++s) space += strlen(s->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static inline int qm_info(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { int error = 0; if (mod->next == NULL) return -EINVAL; if (sizeof(struct module_info32) <= bufsize) { struct module_info32 info; info.addr = (unsigned long)mod; info.size = mod->size; info.flags = mod->flags; info.usecount = ((mod_member_present(mod, can_unload) && mod->can_unload) ? -1 : atomic_read(&mod->uc.usecount)); if (copy_to_user(buf, &info, sizeof(struct module_info32))) return -EFAULT; } else error = -ENOSPC; if (put_user(sizeof(struct module_info32), ret)) return -EFAULT; return error; } /* Note: it is necessary to treat which as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_query_module(char *name_user, u32 which, char *buf, __kernel_size_t32 bufsize, u32 ret) { struct module *mod; int err; PPCDBG(PPCDBG_SYS32M, "sys32_query_module - entered - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); lock_kernel(); if (name_user == 0) { /* This finds "kernel_module" which is not exported. */ for(mod = module_list; mod->next != NULL; mod = mod->next) ; } else { long namelen; char *name; if ((namelen = get_mod_name(name_user, &name)) < 0) { err = namelen; goto out; } err = -ENOENT; if (namelen == 0) { /* This finds "kernel_module" which is not exported. */ for(mod = module_list; mod->next != NULL; mod = mod->next) ; } else if ((mod = find_module(name)) == NULL) { put_mod_name(name); goto out; } put_mod_name(name); } switch ((int)which) { case 0: err = 0; break; case QM_MODULES: err = qm_modules(buf, bufsize, (__kernel_size_t32 *)AA(ret)); break; case QM_DEPS: err = qm_deps(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret)); break; case QM_REFS: err = qm_refs(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret)); break; case QM_SYMBOLS: err = qm_symbols(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret)); break; case QM_INFO: err = qm_info(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret)); break; default: err = -EINVAL; break; } out: unlock_kernel(); PPCDBG(PPCDBG_SYS32, "sys32_query_module - exited - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); return err; } struct kernel_sym32 { u32 value; char name[60]; }; extern asmlinkage long sys_get_kernel_syms(struct kernel_sym *table); asmlinkage long sys32_get_kernel_syms(struct kernel_sym32 *table) { int len, i; struct kernel_sym *tbl; mm_segment_t old_fs; PPCDBG(PPCDBG_SYS32, "sys32_get_kernel_syms - entered - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); len = sys_get_kernel_syms(NULL); if (!table) return len; tbl = kmalloc (len * sizeof (struct kernel_sym), GFP_KERNEL); if (!tbl) return -ENOMEM; old_fs = get_fs(); set_fs (KERNEL_DS); sys_get_kernel_syms(tbl); set_fs (old_fs); for (i = 0; i < len; i++, table += sizeof (struct kernel_sym32)) { if (put_user (tbl[i].value, &table->value) || copy_to_user (table->name, tbl[i].name, 60)) break; } kfree (tbl); PPCDBG(PPCDBG_SYS32, "sys32_get_kernel_syms - exited - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); return i; } #else /* CONFIG_MODULES */ asmlinkage unsigned long sys32_create_module(const char *name_user, size_t size) { PPCDBG(PPCDBG_SYS32, "sys32_create_module - running - pid=%ld, comm=%s\n", current->pid, current->comm); return -ENOSYS; } asmlinkage long sys32_init_module(const char *name_user, struct module *mod_user) { PPCDBG(PPCDBG_SYS32, "sys32_init_module - running - pid=%ld, comm=%s\n", current->pid, current->comm); return -ENOSYS; } asmlinkage long sys32_delete_module(const char *name_user) { PPCDBG(PPCDBG_SYS32, "sys32_delete_module - running - pid=%ld, comm=%s\n", current->pid, current->comm); return -ENOSYS; } /* Note: it is necessary to treat which as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_query_module(const char *name_user, u32 which, char *buf, size_t bufsize, size_t *ret) { PPCDBG(PPCDBG_SYS32, "sys32_query_module - entered - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); /* Let the program know about the new interface. Not that it'll do them much good. */ if ((int)which == 0) return 0; PPCDBG(PPCDBG_SYS32, "sys32_query_module - exited - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); return -ENOSYS; } asmlinkage long sys32_get_kernel_syms(struct kernel_sym *table) { PPCDBG(PPCDBG_SYS32, "sys32_get_kernel_syms - running - pid=%ld, comm=%s\n", current->pid, current->comm); return -ENOSYS; } #endif /* CONFIG_MODULES */ /* Stuff for NFS server syscalls... */ struct nfsctl_svc32 { u16 svc32_port; s32 svc32_nthreads; }; struct nfsctl_client32 { s8 cl32_ident[NFSCLNT_IDMAX+1]; s32 cl32_naddr; struct in_addr cl32_addrlist[NFSCLNT_ADDRMAX]; s32 cl32_fhkeytype; s32 cl32_fhkeylen; u8 cl32_fhkey[NFSCLNT_KEYMAX]; }; struct nfsctl_export32 { s8 ex32_client[NFSCLNT_IDMAX+1]; s8 ex32_path[NFS_MAXPATHLEN+1]; __kernel_dev_t32 ex32_dev; __kernel_ino_t32 ex32_ino; s32 ex32_flags; __kernel_uid_t32 ex32_anon_uid; __kernel_gid_t32 ex32_anon_gid; }; struct nfsctl_uidmap32 { u32 ug32_ident; /* char * */ __kernel_uid_t32 ug32_uidbase; s32 ug32_uidlen; u32 ug32_udimap; /* uid_t * */ __kernel_uid_t32 ug32_gidbase; s32 ug32_gidlen; u32 ug32_gdimap; /* gid_t * */ }; struct nfsctl_fhparm32 { struct sockaddr gf32_addr; __kernel_dev_t32 gf32_dev; __kernel_ino_t32 gf32_ino; s32 gf32_version; }; struct nfsctl_fdparm32 { struct sockaddr gd32_addr; s8 gd32_path[NFS_MAXPATHLEN+1]; s32 gd32_version; }; struct nfsctl_fsparm32 { struct sockaddr gd32_addr; s8 gd32_path[NFS_MAXPATHLEN+1]; s32 gd32_maxlen; }; struct nfsctl_arg32 { s32 ca32_version; /* safeguard */ union { struct nfsctl_svc32 u32_svc; struct nfsctl_client32 u32_client; struct nfsctl_export32 u32_export; struct nfsctl_uidmap32 u32_umap; struct nfsctl_fhparm32 u32_getfh; struct nfsctl_fdparm32 u32_getfd; struct nfsctl_fsparm32 u32_getfs; } u; #define ca32_svc u.u32_svc #define ca32_client u.u32_client #define ca32_export u.u32_export #define ca32_umap u.u32_umap #define ca32_getfh u.u32_getfh #define ca32_getfd u.u32_getfd #define ca32_getfs u.u32_getfs #define ca32_authd u.u32_authd }; union nfsctl_res32 { __u8 cr32_getfh[NFS_FHSIZE]; struct knfsd_fh cr32_getfs; }; static int nfs_svc32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= __get_user(karg->ca_svc.svc_port, &arg32->ca32_svc.svc32_port); err |= __get_user(karg->ca_svc.svc_nthreads, &arg32->ca32_svc.svc32_nthreads); return err; } static int nfs_clnt32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_client.cl_ident[0], &arg32->ca32_client.cl32_ident[0], NFSCLNT_IDMAX); err |= __get_user(karg->ca_client.cl_naddr, &arg32->ca32_client.cl32_naddr); err |= copy_from_user(&karg->ca_client.cl_addrlist[0], &arg32->ca32_client.cl32_addrlist[0], (sizeof(struct in_addr) * NFSCLNT_ADDRMAX)); err |= __get_user(karg->ca_client.cl_fhkeytype, &arg32->ca32_client.cl32_fhkeytype); err |= __get_user(karg->ca_client.cl_fhkeylen, &arg32->ca32_client.cl32_fhkeylen); err |= copy_from_user(&karg->ca_client.cl_fhkey[0], &arg32->ca32_client.cl32_fhkey[0], NFSCLNT_KEYMAX); if(err) return -EFAULT; return 0; } static int nfs_exp32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_export.ex_client[0], &arg32->ca32_export.ex32_client[0], NFSCLNT_IDMAX); err |= copy_from_user(&karg->ca_export.ex_path[0], &arg32->ca32_export.ex32_path[0], NFS_MAXPATHLEN); err |= __get_user(karg->ca_export.ex_dev, &arg32->ca32_export.ex32_dev); err |= __get_user(karg->ca_export.ex_ino, &arg32->ca32_export.ex32_ino); err |= __get_user(karg->ca_export.ex_flags, &arg32->ca32_export.ex32_flags); err |= __get_user(karg->ca_export.ex_anon_uid, &arg32->ca32_export.ex32_anon_uid); err |= __get_user(karg->ca_export.ex_anon_gid, &arg32->ca32_export.ex32_anon_gid); karg->ca_export.ex_anon_uid = karg->ca_export.ex_anon_uid; karg->ca_export.ex_anon_gid = karg->ca_export.ex_anon_gid; if(err) return -EFAULT; return 0; } static int nfs_uud32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { u32 uaddr; int i; int err; memset(karg, 0, sizeof(*karg)); if(__get_user(karg->ca_version, &arg32->ca32_version)) return -EFAULT; karg->ca_umap.ug_ident = (char *)get_free_page(GFP_USER); if(!karg->ca_umap.ug_ident) return -ENOMEM; err = __get_user(uaddr, &arg32->ca32_umap.ug32_ident); if(strncpy_from_user(karg->ca_umap.ug_ident, (char *)A(uaddr), PAGE_SIZE) <= 0) return -EFAULT; err |= __get_user(karg->ca_umap.ug_uidbase, &arg32->ca32_umap.ug32_uidbase); err |= __get_user(karg->ca_umap.ug_uidlen, &arg32->ca32_umap.ug32_uidlen); err |= __get_user(uaddr, &arg32->ca32_umap.ug32_udimap); if (err) return -EFAULT; karg->ca_umap.ug_udimap = kmalloc((sizeof(uid_t) * karg->ca_umap.ug_uidlen), GFP_USER); if(!karg->ca_umap.ug_udimap) return -ENOMEM; for(i = 0; i < karg->ca_umap.ug_uidlen; i++) err |= __get_user(karg->ca_umap.ug_udimap[i], &(((__kernel_uid_t32 *)A(uaddr))[i])); err |= __get_user(karg->ca_umap.ug_gidbase, &arg32->ca32_umap.ug32_gidbase); err |= __get_user(karg->ca_umap.ug_uidlen, &arg32->ca32_umap.ug32_gidlen); err |= __get_user(uaddr, &arg32->ca32_umap.ug32_gdimap); if (err) return -EFAULT; karg->ca_umap.ug_gdimap = kmalloc((sizeof(gid_t) * karg->ca_umap.ug_uidlen), GFP_USER); if(!karg->ca_umap.ug_gdimap) return -ENOMEM; for(i = 0; i < karg->ca_umap.ug_gidlen; i++) err |= __get_user(karg->ca_umap.ug_gdimap[i], &(((__kernel_gid_t32 *)A(uaddr))[i])); return err; } static int nfs_getfh32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_getfh.gf_addr, &arg32->ca32_getfh.gf32_addr, (sizeof(struct sockaddr))); err |= __get_user(karg->ca_getfh.gf_dev, &arg32->ca32_getfh.gf32_dev); err |= __get_user(karg->ca_getfh.gf_ino, &arg32->ca32_getfh.gf32_ino); err |= __get_user(karg->ca_getfh.gf_version, &arg32->ca32_getfh.gf32_version); if(err) return -EFAULT; return 0; } static int nfs_getfd32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_getfd.gd_addr, &arg32->ca32_getfd.gd32_addr, (sizeof(struct sockaddr))); err |= copy_from_user(&karg->ca_getfd.gd_path, &arg32->ca32_getfd.gd32_path, (NFS_MAXPATHLEN+1)); err |= __get_user(karg->ca_getfd.gd_version, &arg32->ca32_getfd.gd32_version); if(err) return -EFAULT; return 0; } static int nfs_getfs32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_getfs.gd_addr, &arg32->ca32_getfs.gd32_addr, (sizeof(struct sockaddr))); err |= copy_from_user(&karg->ca_getfs.gd_path, &arg32->ca32_getfs.gd32_path, (NFS_MAXPATHLEN+1)); err |= __get_user(karg->ca_getfs.gd_maxlen, &arg32->ca32_getfs.gd32_maxlen); if(err) return -EFAULT; return 0; } /* This really doesn't need translations, we are only passing * back a union which contains opaque nfs file handle data. */ static int nfs_getfh32_res_trans(union nfsctl_res *kres, union nfsctl_res32 *res32) { int err; err = copy_to_user(res32, kres, sizeof(*res32)); if(err) return -EFAULT; return 0; } /* Note: it is necessary to treat cmd_parm as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ int asmlinkage sys32_nfsservctl(u32 cmd_parm, struct nfsctl_arg32 *arg32, union nfsctl_res32 *res32) { int cmd = (int)cmd_parm; struct nfsctl_arg *karg = NULL; union nfsctl_res *kres = NULL; mm_segment_t oldfs; int err; karg = kmalloc(sizeof(*karg), GFP_USER); if(!karg) return -ENOMEM; if(res32) { kres = kmalloc(sizeof(*kres), GFP_USER); if(!kres) { kfree(karg); return -ENOMEM; } } switch(cmd) { case NFSCTL_SVC: err = nfs_svc32_trans(karg, arg32); break; case NFSCTL_ADDCLIENT: err = nfs_clnt32_trans(karg, arg32); break; case NFSCTL_DELCLIENT: err = nfs_clnt32_trans(karg, arg32); break; case NFSCTL_EXPORT: case NFSCTL_UNEXPORT: err = nfs_exp32_trans(karg, arg32); break; /* This one is unimplemented, be we're ready for it. */ case NFSCTL_UGIDUPDATE: err = nfs_uud32_trans(karg, arg32); break; case NFSCTL_GETFH: err = nfs_getfh32_trans(karg, arg32); break; case NFSCTL_GETFD: err = nfs_getfd32_trans(karg, arg32); break; case NFSCTL_GETFS: err = nfs_getfs32_trans(karg, arg32); break; default: err = -EINVAL; break; } if(err) goto done; oldfs = get_fs(); set_fs(KERNEL_DS); err = sys_nfsservctl(cmd, karg, kres); set_fs(oldfs); if (err) goto done; if((cmd == NFSCTL_GETFH) || (cmd == NFSCTL_GETFD) || (cmd == NFSCTL_GETFS)) err = nfs_getfh32_res_trans(kres, res32); done: if(karg) { if(cmd == NFSCTL_UGIDUPDATE) { if(karg->ca_umap.ug_ident) kfree(karg->ca_umap.ug_ident); if(karg->ca_umap.ug_udimap) kfree(karg->ca_umap.ug_udimap); if(karg->ca_umap.ug_gdimap) kfree(karg->ca_umap.ug_gdimap); } kfree(karg); } if(kres) kfree(kres); return err; } struct timespec32 { s32 tv_sec; s32 tv_nsec; }; extern asmlinkage long sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp); asmlinkage long sys32_nanosleep(struct timespec32 *rqtp, struct timespec32 *rmtp) { struct timespec t; int ret; mm_segment_t old_fs = get_fs (); PPCDBG(PPCDBG_SYS32NI, "sys32_nanosleep - running - pid=%ld, comm=%s \n", current->pid, current->comm); if (get_user (t.tv_sec, &rqtp->tv_sec) || __get_user (t.tv_nsec, &rqtp->tv_nsec)) return -EFAULT; set_fs (KERNEL_DS); ret = sys_nanosleep(&t, rmtp ? &t : NULL); set_fs (old_fs); if (rmtp && ret == -EINTR) { if (__put_user (t.tv_sec, &rmtp->tv_sec) || __put_user (t.tv_nsec, &rmtp->tv_nsec)) return -EFAULT; } return ret; } /* These are here just in case some old sparc32 binary calls it. */ asmlinkage long sys32_pause(void) { PPCDBG(PPCDBG_SYS32, "sys32_pause - running - pid=%ld, comm=%s \n", current->pid, current->comm); current->state = TASK_INTERRUPTIBLE; schedule(); return -ERESTARTNOHAND; } static inline long get_it32(struct itimerval *o, struct itimerval32 *i) { return (!access_ok(VERIFY_READ, i, sizeof(*i)) || (__get_user(o->it_interval.tv_sec, &i->it_interval.tv_sec) | __get_user(o->it_interval.tv_usec, &i->it_interval.tv_usec) | __get_user(o->it_value.tv_sec, &i->it_value.tv_sec) | __get_user(o->it_value.tv_usec, &i->it_value.tv_usec))); } static inline long put_it32(struct itimerval32 *o, struct itimerval *i) { return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) || (__put_user(i->it_interval.tv_sec, &o->it_interval.tv_sec) | __put_user(i->it_interval.tv_usec, &o->it_interval.tv_usec) | __put_user(i->it_value.tv_sec, &o->it_value.tv_sec) | __put_user(i->it_value.tv_usec, &o->it_value.tv_usec))); } static inline long get_tv32(struct timeval *o, struct timeval32 *i) { return (!access_ok(VERIFY_READ, i, sizeof(*i)) || (__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec))); } static inline long put_tv32(struct timeval32 *o, struct timeval *i) { return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) || (__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec))); } extern int do_getitimer(int which, struct itimerval *value); /* Note: it is necessary to treat which as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_getitimer(u32 which, struct itimerval32 *it) { struct itimerval kit; int error; PPCDBG(PPCDBG_SYS32, "sys32_getitimer - entered - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); error = do_getitimer((int)which, &kit); if (!error && put_it32(it, &kit)) error = -EFAULT; PPCDBG(PPCDBG_SYS32, "sys32_getitimer - exited - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); return error; } extern int do_setitimer(int which, struct itimerval *, struct itimerval *); /* Note: it is necessary to treat which as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_setitimer(u32 which, struct itimerval32 *in, struct itimerval32 *out) { struct itimerval kin, kout; int error; PPCDBG(PPCDBG_SYS32, "sys32_setitimer - entered - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); if (in) { if (get_it32(&kin, in)) return -EFAULT; } else memset(&kin, 0, sizeof(kin)); error = do_setitimer((int)which, &kin, out ? &kout : NULL); if (error || !out) return error; if (put_it32(out, &kout)) return -EFAULT; PPCDBG(PPCDBG_SYS32, "sys32_setitimer - exited - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); return 0; } #define RLIM_INFINITY32 0xffffffff #define RESOURCE32(x) ((x > RLIM_INFINITY32) ? RLIM_INFINITY32 : x) struct rlimit32 { u32 rlim_cur; u32 rlim_max; }; extern asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit *rlim); asmlinkage long sys32_getrlimit(unsigned int resource, struct rlimit32 *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_getrlimit(resource, &r); set_fs(old_fs); if (!ret) { ret = put_user(RESOURCE32(r.rlim_cur), &rlim->rlim_cur); ret |= __put_user(RESOURCE32(r.rlim_max), &rlim->rlim_max); } return ret; } /* Back compatibility for getrlimit. Needed for some apps. */ asmlinkage long sys32_old_getrlimit(unsigned int resource, struct rlimit32* rlim) { struct rlimit x; // 64-bit version of the resource limits. struct rlimit32 x32; // 32-bit version of the resource limits. long rc = 0; if (resource >= RLIM_NLIMITS) { PPCDBG(PPCDBG_SYS32, "sys32_old_getrlimit - specified resource is too large (%x) - pid=%ld, comm=%s\n", resource, current->pid, current->comm); return -EINVAL; } memcpy(&x, current->rlim+resource, sizeof(struct rlimit)); if(x.rlim_cur > RLIM_INFINITY32) x32.rlim_cur = RLIM_INFINITY32; else x32.rlim_cur = x.rlim_cur; if(x.rlim_max > RLIM_INFINITY32) x32.rlim_max = RLIM_INFINITY32; else x32.rlim_max = x.rlim_max; rc = (copy_to_user(rlim, &x32, sizeof(x32))) ? (-EFAULT) : 0; if (rc == 0) { PPCDBG(PPCDBG_SYS32, "sys32_old_getrlimit - current=%x, maximum=%x - pid=%ld, comm=%s\n", x32.rlim_cur, x32.rlim_max, current->pid, current->comm); } else { PPCDBG(PPCDBG_SYS32, "sys32_old_getrlimit - unable to copy into user's storage - pid=%ld, comm=%s\n", current->pid, current->comm); } return rc; } extern asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit *rlim); asmlinkage long sys32_setrlimit(unsigned int resource, struct rlimit32 *rlim) { struct rlimit r; long ret; mm_segment_t old_fs = get_fs (); PPCDBG(PPCDBG_SYS32, "sys32_setrlimit - entered - resource=%x, rlim=%p - pid=%ld, comm=%s\n", resource, rlim, current->pid, current->comm); if (resource >= RLIM_NLIMITS) return -EINVAL; if (get_user (r.rlim_cur, &rlim->rlim_cur) || __get_user (r.rlim_max, &rlim->rlim_max)) return -EFAULT; if (r.rlim_cur >= RLIM_INFINITY32) r.rlim_cur = RLIM_INFINITY; if (r.rlim_max >= RLIM_INFINITY32) r.rlim_max = RLIM_INFINITY; set_fs (KERNEL_DS); ret = sys_setrlimit(resource, &r); set_fs (old_fs); PPCDBG(PPCDBG_SYS32, "sys32_setrlimit - exited w/ ret=%x - pid=%ld, comm=%s\n", ret, current->pid, current->comm); return ret; } struct rusage32 { struct timeval32 ru_utime; struct timeval32 ru_stime; s32 ru_maxrss; s32 ru_ixrss; s32 ru_idrss; s32 ru_isrss; s32 ru_minflt; s32 ru_majflt; s32 ru_nswap; s32 ru_inblock; s32 ru_oublock; s32 ru_msgsnd; s32 ru_msgrcv; s32 ru_nsignals; s32 ru_nvcsw; s32 ru_nivcsw; }; static int put_rusage (struct rusage32 *ru, struct rusage *r) { int err; err = put_user (r->ru_utime.tv_sec, &ru->ru_utime.tv_sec); err |= __put_user (r->ru_utime.tv_usec, &ru->ru_utime.tv_usec); err |= __put_user (r->ru_stime.tv_sec, &ru->ru_stime.tv_sec); err |= __put_user (r->ru_stime.tv_usec, &ru->ru_stime.tv_usec); err |= __put_user (r->ru_maxrss, &ru->ru_maxrss); err |= __put_user (r->ru_ixrss, &ru->ru_ixrss); err |= __put_user (r->ru_idrss, &ru->ru_idrss); err |= __put_user (r->ru_isrss, &ru->ru_isrss); err |= __put_user (r->ru_minflt, &ru->ru_minflt); err |= __put_user (r->ru_majflt, &ru->ru_majflt); err |= __put_user (r->ru_nswap, &ru->ru_nswap); err |= __put_user (r->ru_inblock, &ru->ru_inblock); err |= __put_user (r->ru_oublock, &ru->ru_oublock); err |= __put_user (r->ru_msgsnd, &ru->ru_msgsnd); err |= __put_user (r->ru_msgrcv, &ru->ru_msgrcv); err |= __put_user (r->ru_nsignals, &ru->ru_nsignals); err |= __put_user (r->ru_nvcsw, &ru->ru_nvcsw); err |= __put_user (r->ru_nivcsw, &ru->ru_nivcsw); return err; } extern asmlinkage long sys_getrusage(int who, struct rusage *ru); /* Note: it is necessary to treat who as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_getrusage(u32 who, struct rusage32 *ru) { struct rusage r; int ret; mm_segment_t old_fs = get_fs(); PPCDBG(PPCDBG_SYS32X, "sys32_getrusage - running - pid=%ld, comm=%s\n", current->pid, current->comm); set_fs (KERNEL_DS); ret = sys_getrusage((int)who, &r); set_fs (old_fs); if (put_rusage (ru, &r)) return -EFAULT; return ret; } struct sysinfo32 { s32 uptime; u32 loads[3]; u32 totalram; u32 freeram; u32 sharedram; u32 bufferram; u32 totalswap; u32 freeswap; unsigned short procs; unsigned short pad; u32 totalhigh; u32 freehigh; u32 mem_unit; char _f[20-2*sizeof(u32)-sizeof(int)]; }; extern asmlinkage long sys_sysinfo(struct sysinfo *info); asmlinkage long sys32_sysinfo(struct sysinfo32 *info) { struct sysinfo s; int ret, err; int bitcount = 0; mm_segment_t old_fs = get_fs (); PPCDBG(PPCDBG_SYS32, "sys32_sysinfo - entered - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); set_fs (KERNEL_DS); ret = sys_sysinfo(&s); set_fs (old_fs); /* Check to see if any memory value is too large for 32-bit and scale * down if needed */ if ((s.totalram >> 32) || (s.totalswap >> 32)) { while (s.mem_unit < PAGE_SIZE) { s.mem_unit <<= 1; bitcount++; } s.totalram >>= bitcount; s.freeram >>= bitcount; s.sharedram >>= bitcount; s.bufferram >>= bitcount; s.totalswap >>= bitcount; s.freeswap >>= bitcount; s.totalhigh >>= bitcount; s.freehigh >>= bitcount; } err = put_user (s.uptime, &info->uptime); err |= __put_user (s.loads[0], &info->loads[0]); err |= __put_user (s.loads[1], &info->loads[1]); err |= __put_user (s.loads[2], &info->loads[2]); err |= __put_user (s.totalram, &info->totalram); err |= __put_user (s.freeram, &info->freeram); err |= __put_user (s.sharedram, &info->sharedram); err |= __put_user (s.bufferram, &info->bufferram); err |= __put_user (s.totalswap, &info->totalswap); err |= __put_user (s.freeswap, &info->freeswap); err |= __put_user (s.procs, &info->procs); err |= __put_user (s.totalhigh, &info->totalhigh); err |= __put_user (s.freehigh, &info->freehigh); err |= __put_user (s.mem_unit, &info->mem_unit); if (err) return -EFAULT; PPCDBG(PPCDBG_SYS32, "sys32_sysinfo - exited - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); return ret; } /* Translations due to time_t size differences. Which affects all sorts of things, like timeval and itimerval. */ extern struct timezone sys_tz; extern int do_sys_settimeofday(struct timeval *tv, struct timezone *tz); asmlinkage long sys32_gettimeofday(struct timeval32 *tv, struct timezone *tz) { PPCDBG(PPCDBG_SYS32X, "sys32_gettimeofday - running - pid=%ld, comm=%s\n", current->pid, current->comm); if (tv) { struct timeval ktv; do_gettimeofday(&ktv); if (put_tv32(tv, &ktv)) return -EFAULT; } if (tz) { if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) return -EFAULT; } return 0; } asmlinkage long sys32_settimeofday(struct timeval32 *tv, struct timezone *tz) { struct timeval ktv; struct timezone ktz; PPCDBG(PPCDBG_SYS32, "sys32_settimeofday - running - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); if (tv) { if (get_tv32(&ktv, tv)) return -EFAULT; } if (tz) { if (copy_from_user(&ktz, tz, sizeof(ktz))) return -EFAULT; } return do_sys_settimeofday(tv ? &ktv : NULL, tz ? &ktz : NULL); } struct tms32 { __kernel_clock_t32 tms_utime; __kernel_clock_t32 tms_stime; __kernel_clock_t32 tms_cutime; __kernel_clock_t32 tms_cstime; }; extern asmlinkage long sys_times(struct tms * tbuf); asmlinkage long sys32_times(struct tms32 *tbuf) { struct tms t; long ret; mm_segment_t old_fs = get_fs (); int err; PPCDBG(PPCDBG_SYS32, "sys32_times - entered - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); set_fs (KERNEL_DS); ret = sys_times(tbuf ? &t : NULL); set_fs (old_fs); if (tbuf) { err = put_user (t.tms_utime, &tbuf->tms_utime); err |= __put_user (t.tms_stime, &tbuf->tms_stime); err |= __put_user (t.tms_cutime, &tbuf->tms_cutime); err |= __put_user (t.tms_cstime, &tbuf->tms_cstime); if (err) ret = -EFAULT; } PPCDBG(PPCDBG_SYS32, "sys32_times - exited - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); return ret; } struct msgbuf32 { s32 mtype; char mtext[1]; }; struct semid_ds32 { struct ipc_perm32 sem_perm; unsigned int _pad0; __kernel_time_t32 sem_otime; unsigned int _pad1; __kernel_time_t32 sem_ctime; u32 sem_base; u32 sem_pending; u32 sem_pending_last; u32 undo; unsigned short sem_nsems; }; struct semid64_ds32 { struct ipc64_perm32 sem_perm; unsigned int __unused1; __kernel_time_t32 sem_otime; unsigned int __unused2; __kernel_time_t32 sem_ctime; u32 sem_nsems; u32 __unused3; u32 __unused4; }; struct msqid_ds32 { struct ipc_perm32 msg_perm; u32 msg_first; u32 msg_last; __kernel_time_t32 msg_stime; __kernel_time_t32 msg_rtime; __kernel_time_t32 msg_ctime; u32 msg_lcbytes; u32 msg_lqbytes; unsigned short msg_cbytes; unsigned short msg_qnum; unsigned short msg_qbytes; __kernel_ipc_pid_t32 msg_lspid; __kernel_ipc_pid_t32 msg_lrpid; }; struct msqid64_ds32 { struct ipc64_perm32 msg_perm; unsigned int __unused1; __kernel_time_t32 msg_stime; unsigned int __unused2; __kernel_time_t32 msg_rtime; unsigned int __unused3; __kernel_time_t32 msg_ctime; unsigned int msg_cbytes; unsigned int msg_qnum; unsigned int msg_qbytes; __kernel_pid_t32 msg_lspid; __kernel_pid_t32 msg_lrpid; unsigned int __unused4; unsigned int __unused5; }; struct shmid_ds32 { struct ipc_perm32 shm_perm; int shm_segsz; __kernel_time_t32 shm_atime; __kernel_time_t32 shm_dtime; __kernel_time_t32 shm_ctime; __kernel_ipc_pid_t32 shm_cpid; __kernel_ipc_pid_t32 shm_lpid; unsigned short shm_nattch; unsigned short __unused; unsigned int __unused2; unsigned int __unused3; }; struct shmid64_ds32 { struct ipc64_perm32 shm_perm; unsigned int __unused1; __kernel_time_t32 shm_atime; unsigned int __unused2; __kernel_time_t32 shm_dtime; unsigned int __unused3; __kernel_time_t32 shm_ctime; unsigned int __unused4; __kernel_size_t32 shm_segsz; __kernel_pid_t32 shm_cpid; __kernel_pid_t32 shm_lpid; unsigned int shm_nattch; unsigned int __unused5; unsigned int __unused6; }; /* * sys32_ipc() is the de-multiplexer for the SysV IPC calls in 32bit * emulation.. * * This is really horribly ugly. */ static long do_sys32_semctl(int first, int second, int third, void *uptr) { union semun fourth; u32 pad; int err, err2; mm_segment_t old_fs; if (!uptr) return -EINVAL; err = -EFAULT; if (get_user(pad, (u32 *)uptr)) return err; if ((third & (~IPC_64)) == SETVAL) fourth.val = (int)pad; else fourth.__pad = (void *)A(pad); switch (third & (~IPC_64)) { case IPC_INFO: case IPC_RMID: case SEM_INFO: case GETVAL: case GETPID: case GETNCNT: case GETZCNT: case GETALL: case SETALL: case SETVAL: err = sys_semctl(first, second, third, fourth); break; case IPC_STAT: case SEM_STAT: if (third & IPC_64) { struct semid64_ds s64; struct semid64_ds32 *usp; usp = (struct semid64_ds32 *)A(pad); fourth.__pad = &s64; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_semctl(first, second, third, fourth); set_fs(old_fs); err2 = copy_to_user(&usp->sem_perm, &s64.sem_perm, sizeof(struct ipc64_perm32)); err2 |= __put_user(s64.sem_otime, &usp->sem_otime); err2 |= __put_user(s64.sem_ctime, &usp->sem_ctime); err2 |= __put_user(s64.sem_nsems, &usp->sem_nsems); if (err2) err = -EFAULT; } else { struct semid_ds s; struct semid_ds32 *usp; usp = (struct semid_ds32 *)A(pad); fourth.__pad = &s; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_semctl(first, second, third, fourth); set_fs(old_fs); err2 = copy_to_user(&usp->sem_perm, &s.sem_perm, sizeof(struct ipc_perm32)); err2 |= __put_user(s.sem_otime, &usp->sem_otime); err2 |= __put_user(s.sem_ctime, &usp->sem_ctime); err2 |= __put_user(s.sem_nsems, &usp->sem_nsems); if (err2) err = -EFAULT; } break; case IPC_SET: if (third & IPC_64) { struct semid64_ds s64; struct semid64_ds32 *usp; usp = (struct semid64_ds32 *)A(pad); err = get_user(s64.sem_perm.uid, &usp->sem_perm.uid); err |= __get_user(s64.sem_perm.gid, &usp->sem_perm.gid); err |= __get_user(s64.sem_perm.mode, &usp->sem_perm.mode); if (err) goto out; fourth.__pad = &s64; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_semctl(first, second, third, fourth); set_fs(old_fs); } else { struct semid_ds s; struct semid_ds32 *usp; usp = (struct semid_ds32 *)A(pad); err = get_user(s.sem_perm.uid, &usp->sem_perm.uid); err |= __get_user(s.sem_perm.gid, &usp->sem_perm.gid); err |= __get_user(s.sem_perm.mode, &usp->sem_perm.mode); if (err) goto out; fourth.__pad = &s; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_semctl(first, second, third, fourth); set_fs(old_fs); } break; default: err = -EINVAL; } out: return err; } #define MAXBUF (64*1024) static int do_sys32_msgsnd(int first, int second, int third, void *uptr) { struct msgbuf *p; struct msgbuf32 *up = (struct msgbuf32 *)uptr; mm_segment_t old_fs; int err; if (second < 0 || (second >= MAXBUF-sizeof(struct msgbuf))) return -EINVAL; p = kmalloc(second + sizeof(struct msgbuf), GFP_USER); if (!p) return -ENOMEM; err = get_user(p->mtype, &up->mtype); err |= copy_from_user(p->mtext, &up->mtext, second); if (err) { err = -EFAULT; goto out; } old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_msgsnd(first, p, second, third); set_fs(old_fs); out: kfree(p); return err; } static int do_sys32_msgrcv(int first, int second, int msgtyp, int third, int version, void *uptr) { struct msgbuf32 *up; struct msgbuf *p; mm_segment_t old_fs; int err; if (second < 0 || (second >= MAXBUF-sizeof(struct msgbuf))) return -EINVAL; if (!version) { struct ipc_kludge_32 *uipck = (struct ipc_kludge_32 *)uptr; struct ipc_kludge_32 ipck; err = -EINVAL; if (!uptr) goto out; err = -EFAULT; if (copy_from_user(&ipck, uipck, sizeof(struct ipc_kludge_32))) goto out; uptr = (void *)A(ipck.msgp); msgtyp = ipck.msgtyp; } err = -ENOMEM; p = kmalloc(second + sizeof (struct msgbuf), GFP_USER); if (!p) goto out; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_msgrcv(first, p, second, msgtyp, third); set_fs(old_fs); if (err < 0) goto free_then_out; up = (struct msgbuf32 *)uptr; if (put_user(p->mtype, &up->mtype) || copy_to_user(&up->mtext, p->mtext, err)) err = -EFAULT; free_then_out: kfree(p); out: return err; } static int do_sys32_msgctl(int first, int second, void *uptr) { int err = -EINVAL, err2; mm_segment_t old_fs; switch (second & (~IPC_64)) { case IPC_INFO: case IPC_RMID: case MSG_INFO: err = sys_msgctl(first, second, (struct msqid_ds *)uptr); break; case IPC_SET: if (second & IPC_64) { struct msqid64_ds m64; struct msqid64_ds32 *up = (struct msqid64_ds32 *)uptr; err2 = copy_from_user(&m64.msg_perm, &up->msg_perm, sizeof(struct ipc64_perm32)); err2 |= __get_user(m64.msg_qbytes, &up->msg_qbytes); if (err2) { err = -EFAULT; break; } old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_msgctl(first, second, (struct msqid_ds *)&m64); set_fs(old_fs); } else { struct msqid_ds m; struct msqid_ds32 *up = (struct msqid_ds32 *)uptr; err2 = copy_from_user(&m.msg_perm, &up->msg_perm, sizeof(struct ipc_perm32)); err2 |= __get_user(m.msg_qbytes, &up->msg_qbytes); if (err2) { err = -EFAULT; break; } old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_msgctl(first, second, &m); set_fs(old_fs); } break; case IPC_STAT: case MSG_STAT: if (second & IPC_64) { struct msqid64_ds m64; struct msqid64_ds32 *up = (struct msqid64_ds32 *)uptr; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_msgctl(first, second, (struct msqid_ds *)&m64); set_fs(old_fs); err2 = copy_to_user(&up->msg_perm, &m64.msg_perm, sizeof(struct ipc64_perm32)); err2 |= __put_user(m64.msg_stime, &up->msg_stime); err2 |= __put_user(m64.msg_rtime, &up->msg_rtime); err2 |= __put_user(m64.msg_ctime, &up->msg_ctime); err2 |= __put_user(m64.msg_cbytes, &up->msg_cbytes); err2 |= __put_user(m64.msg_qnum, &up->msg_qnum); err2 |= __put_user(m64.msg_qbytes, &up->msg_qbytes); err2 |= __put_user(m64.msg_lspid, &up->msg_lspid); err2 |= __put_user(m64.msg_lrpid, &up->msg_lrpid); if (err2) err = -EFAULT; } else { struct msqid64_ds m; struct msqid_ds32 *up = (struct msqid_ds32 *)uptr; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_msgctl(first, second, (struct msqid_ds *)&m); set_fs(old_fs); err2 = copy_to_user(&up->msg_perm, &m.msg_perm, sizeof(struct ipc_perm32)); err2 |= __put_user(m.msg_stime, &up->msg_stime); err2 |= __put_user(m.msg_rtime, &up->msg_rtime); err2 |= __put_user(m.msg_ctime, &up->msg_ctime); err2 |= __put_user(m.msg_cbytes, &up->msg_cbytes); err2 |= __put_user(m.msg_qnum, &up->msg_qnum); err2 |= __put_user(m.msg_qbytes, &up->msg_qbytes); err2 |= __put_user(m.msg_lspid, &up->msg_lspid); err2 |= __put_user(m.msg_lrpid, &up->msg_lrpid); if (err2) err = -EFAULT; } break; } return err; } static int do_sys32_shmat(int first, int second, int third, int version, void *uptr) { unsigned long raddr; u32 *uaddr = (u32 *)A((u32)third); int err = -EINVAL; if (version == 1) return err; err = sys_shmat(first, uptr, second, &raddr); if (err) return err; err = put_user(raddr, uaddr); return err; } static int do_sys32_shmctl(int first, int second, void *uptr) { int err = -EINVAL, err2; mm_segment_t old_fs; switch (second & (~IPC_64)) { case IPC_INFO: case IPC_RMID: case SHM_LOCK: case SHM_UNLOCK: err = sys_shmctl(first, second, (struct shmid_ds *)uptr); break; case IPC_SET: if (second & IPC_64) { struct shmid64_ds32 *up = (struct shmid64_ds32 *)uptr; struct shmid64_ds s64; err = get_user(s64.shm_perm.uid, &up->shm_perm.uid); err |= __get_user(s64.shm_perm.gid, &up->shm_perm.gid); err |= __get_user(s64.shm_perm.mode, &up->shm_perm.mode); if (err) break; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_shmctl(first, second, (struct shmid_ds *)&s64); set_fs(old_fs); } else { struct shmid_ds32 *up = (struct shmid_ds32 *)uptr; struct shmid_ds s; err = get_user(s.shm_perm.uid, &up->shm_perm.uid); err |= __get_user(s.shm_perm.gid, &up->shm_perm.gid); err |= __get_user(s.shm_perm.mode, &up->shm_perm.mode); if (err) break; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_shmctl(first, second, &s); set_fs(old_fs); } break; case IPC_STAT: case SHM_STAT: if (second & IPC_64) { struct shmid64_ds32 *up = (struct shmid64_ds32 *)uptr; struct shmid64_ds s64; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_shmctl(first, second, (struct shmid_ds *)&s64); set_fs(old_fs); if (err < 0) break; err2 = copy_to_user(&up->shm_perm, &s64.shm_perm, sizeof(struct ipc64_perm32)); err2 |= __put_user(s64.shm_atime, &up->shm_atime); err2 |= __put_user(s64.shm_dtime, &up->shm_dtime); err2 |= __put_user(s64.shm_ctime, &up->shm_ctime); err2 |= __put_user(s64.shm_segsz, &up->shm_segsz); err2 |= __put_user(s64.shm_nattch, &up->shm_nattch); err2 |= __put_user(s64.shm_cpid, &up->shm_cpid); err2 |= __put_user(s64.shm_lpid, &up->shm_lpid); if (err2) err = -EFAULT; } else { struct shmid_ds32 *up = (struct shmid_ds32 *)uptr; struct shmid_ds s; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_shmctl(first, second, &s); set_fs(old_fs); if (err < 0) break; err2 = copy_to_user(&up->shm_perm, &s.shm_perm, sizeof(struct ipc_perm32)); err2 |= __put_user (s.shm_atime, &up->shm_atime); err2 |= __put_user (s.shm_dtime, &up->shm_dtime); err2 |= __put_user (s.shm_ctime, &up->shm_ctime); err2 |= __put_user (s.shm_segsz, &up->shm_segsz); err2 |= __put_user (s.shm_nattch, &up->shm_nattch); err2 |= __put_user (s.shm_cpid, &up->shm_cpid); err2 |= __put_user (s.shm_lpid, &up->shm_lpid); if (err2) err = -EFAULT; } break; case SHM_INFO: { struct shm_info si; struct shm_info32 { int used_ids; u32 shm_tot, shm_rss, shm_swp; u32 swap_attempts, swap_successes; } *uip = (struct shm_info32 *)uptr; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_shmctl(first, second, (struct shmid_ds *)&si); set_fs(old_fs); if (err < 0) break; err2 = put_user(si.used_ids, &uip->used_ids); err2 |= __put_user(si.shm_tot, &uip->shm_tot); err2 |= __put_user(si.shm_rss, &uip->shm_rss); err2 |= __put_user(si.shm_swp, &uip->shm_swp); err2 |= __put_user(si.swap_attempts, &uip->swap_attempts); err2 |= __put_user(si.swap_successes, &uip->swap_successes); if (err2) err = -EFAULT; break; } } return err; } /* * Note: it is necessary to treat first_parm, second_parm, and * third_parm as unsigned ints, with the corresponding cast to a * signed int to insure that the proper conversion (sign extension) * between the register representation of a signed int (msr in 32-bit * mode) and the register representation of a signed int (msr in * 64-bit mode) is performed. */ asmlinkage long sys32_ipc(u32 call, u32 first_parm, u32 second_parm, u32 third_parm, u32 ptr, u32 fifth) { int first = (int)first_parm; int second = (int)second_parm; int third = (int)third_parm; int version, err; PPCDBG(PPCDBG_SYS32, "sys32_ipc - entered - call=%x, parm1=%x, parm2=%x, parm3=%x, parm4=%x, parm5=%x \n", call, first_parm, second_parm, third_parm, ptr, fifth); version = call >> 16; /* hack for backward compatibility */ call &= 0xffff; switch (call) { case SEMOP: /* struct sembuf is the same on 32 and 64bit :)) */ err = sys_semop(first, (struct sembuf *)AA(ptr), second); break; case SEMGET: err = sys_semget(first, second, third); break; case SEMCTL: err = do_sys32_semctl(first, second, third, (void *)AA(ptr)); break; case MSGSND: err = do_sys32_msgsnd(first, second, third, (void *)AA(ptr)); break; case MSGRCV: err = do_sys32_msgrcv(first, second, fifth, third, version, (void *)AA(ptr)); break; case MSGGET: err = sys_msgget((key_t)first, second); break; case MSGCTL: err = do_sys32_msgctl(first, second, (void *)AA(ptr)); break; case SHMAT: err = do_sys32_shmat(first, second, third, version, (void *)AA(ptr)); break; case SHMDT: err = sys_shmdt((char *)AA(ptr)); break; case SHMGET: err = sys_shmget(first, second, third); break; case SHMCTL: err = do_sys32_shmctl(first, second, (void *)AA(ptr)); break; default: err = -ENOSYS; break; } PPCDBG(PPCDBG_SYS32, "sys32_ipc - exited w/ %d/0x%x \n", err, err); return err; } /* stat syscall methods. */ extern asmlinkage int sys_stat(char* filename, struct __old_kernel_stat* statbuf); static int cp_old_stat32(struct inode* inode, struct __old_kernel_stat32* statbuf) { static int warncount = 5; struct __old_kernel_stat32 tmp; if (warncount) { warncount--; printk("VFS: Warning: %s using old stat() call. Recompile your binary.\n", current->comm); } tmp.st_dev = kdev_t_to_nr(inode->i_dev); tmp.st_ino = inode->i_ino; tmp.st_mode = inode->i_mode; tmp.st_nlink = inode->i_nlink; SET_OLDSTAT_UID(tmp, inode->i_uid); SET_OLDSTAT_GID(tmp, inode->i_gid); tmp.st_rdev = kdev_t_to_nr(inode->i_rdev); tmp.st_size = inode->i_size; tmp.st_atime = inode->i_atime; tmp.st_mtime = inode->i_mtime; tmp.st_ctime = inode->i_ctime; return copy_to_user(statbuf,&tmp,sizeof(tmp)) ? -EFAULT : 0; } asmlinkage long sys32_stat(char* filename, struct __old_kernel_stat32* statbuf) { struct nameidata nd; int error; PPCDBG(PPCDBG_SYS32X, "sys32_stat - entered - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); error = user_path_walk(filename, &nd); if (!error) { error = do_revalidate(nd.dentry); if (!error) error = cp_old_stat32(nd.dentry->d_inode, statbuf); path_release(&nd); } PPCDBG(PPCDBG_SYS32X, "sys32_stat - exited - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); return error; } asmlinkage long sys32_fstat(unsigned int fd, struct __old_kernel_stat32* statbuf) { struct file *f; int err = -EBADF; PPCDBG(PPCDBG_SYS32X, "sys32_fstat - entered - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); f = fget(fd); if (f) { struct dentry * dentry = f->f_dentry; err = do_revalidate(dentry); if (!err) err = cp_old_stat32(dentry->d_inode, statbuf); fput(f); } PPCDBG(PPCDBG_SYS32X, "sys32_fstat - exited - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); return err; } asmlinkage long sys32_lstat(char* filename, struct __old_kernel_stat32* statbuf) { struct nameidata nd; int error; PPCDBG(PPCDBG_SYS32X, "sys32_lstat - entered - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); error = user_path_walk_link(filename, &nd); if (!error) { error = do_revalidate(nd.dentry); if (!error) error = cp_old_stat32(nd.dentry->d_inode, statbuf); path_release(&nd); } PPCDBG(PPCDBG_SYS32X, "sys32_lstat - exited - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); return error; } extern asmlinkage ssize_t sys_sendfile(int out_fd, int in_fd, off_t* offset, size_t count); /* Note: it is necessary to treat out_fd and in_fd as unsigned ints, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_sendfile(u32 out_fd, u32 in_fd, __kernel_off_t32* offset, u32 count) { mm_segment_t old_fs = get_fs(); int ret; off_t of; if (offset && get_user(of, offset)) return -EFAULT; set_fs(KERNEL_DS); ret = sys_sendfile((int)out_fd, (int)in_fd, offset ? &of : NULL, count); set_fs(old_fs); if (offset && put_user(of, offset)) return -EFAULT; return ret; } extern asmlinkage int sys_setsockopt(int fd, int level, int optname, char *optval, int optlen); asmlinkage long sys32_setsockopt(int fd, int level, int optname, char* optval, int optlen) { PPCDBG(PPCDBG_SYS32,"sys32_setsockopt - running - pid=%ld, comm=%s\n", current->pid, current->comm); if (level == SOL_SOCKET && optname == SO_ATTACH_FILTER) { struct sock_fprog32 { __u16 len; __u32 filter; } *fprog32 = (struct sock_fprog32 *)optval; struct sock_fprog kfprog; struct sock_filter *kfilter; unsigned int fsize; mm_segment_t old_fs; __u32 uptr; int ret; if (get_user(kfprog.len, &fprog32->len) || __get_user(uptr, &fprog32->filter)) return -EFAULT; kfprog.filter = (struct sock_filter *)A(uptr); fsize = kfprog.len * sizeof(struct sock_filter); kfilter = (struct sock_filter *)kmalloc(fsize, GFP_KERNEL); if (kfilter == NULL) return -ENOMEM; if (copy_from_user(kfilter, kfprog.filter, fsize)) { kfree(kfilter); return -EFAULT; } kfprog.filter = kfilter; old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_setsockopt(fd, level, optname, (char *)&kfprog, sizeof(kfprog)); set_fs(old_fs); kfree(kfilter); return ret; } return sys_setsockopt(fd, level, optname, optval, optlen); } #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 16 for IP, 16 for IPX, 24 for IPv6, about 80 for AX.25 */ #define __CMSG32_NXTHDR(ctl, len, cmsg, cmsglen) __cmsg32_nxthdr((ctl),(len),(cmsg),(cmsglen)) #define CMSG32_NXTHDR(mhdr, cmsg, cmsglen) cmsg32_nxthdr((mhdr), (cmsg), (cmsglen)) #define CMSG32_ALIGN(len) ( ((len)+sizeof(int)-1) & ~(sizeof(int)-1) ) #define CMSG32_DATA(cmsg) ((void *)((char *)(cmsg) + CMSG32_ALIGN(sizeof(struct cmsghdr32)))) #define CMSG32_SPACE(len) (CMSG32_ALIGN(sizeof(struct cmsghdr32)) + CMSG32_ALIGN(len)) #define CMSG32_LEN(len) (CMSG32_ALIGN(sizeof(struct cmsghdr32)) + (len)) #define __CMSG32_FIRSTHDR(ctl,len) ((len) >= sizeof(struct cmsghdr32) ? \ (struct cmsghdr32 *)(ctl) : \ (struct cmsghdr32 *)NULL) #define CMSG32_FIRSTHDR(msg) __CMSG32_FIRSTHDR((msg)->msg_control, (msg)->msg_controllen) struct msghdr32 { u32 msg_name; int msg_namelen; u32 msg_iov; __kernel_size_t32 msg_iovlen; u32 msg_control; __kernel_size_t32 msg_controllen; unsigned msg_flags; }; struct cmsghdr32 { __kernel_size_t32 cmsg_len; int cmsg_level; int cmsg_type; }; __inline__ struct cmsghdr32 *__cmsg32_nxthdr(void *__ctl, __kernel_size_t __size, struct cmsghdr32 *__cmsg, int __cmsg_len) { struct cmsghdr32 * __ptr; __ptr = (struct cmsghdr32 *)(((unsigned char *) __cmsg) + CMSG32_ALIGN(__cmsg_len)); if ((unsigned long)((char*)(__ptr+1) - (char *) __ctl) > __size) return NULL; return __ptr; } __inline__ struct cmsghdr32 *cmsg32_nxthdr (struct msghdr *__msg, struct cmsghdr32 *__cmsg, int __cmsg_len) { return __cmsg32_nxthdr(__msg->msg_control, __msg->msg_controllen, __cmsg, __cmsg_len); } extern __inline__ struct socket *socki_lookup(struct inode *inode) { return &inode->u.socket_i; } extern __inline__ struct socket *sockfd_lookup(int fd, int *err) { struct file *file; struct inode *inode; if (!(file = fget(fd))) { *err = -EBADF; return NULL; } inode = file->f_dentry->d_inode; if (!inode || !inode->i_sock || !socki_lookup(inode)) { *err = -ENOTSOCK; fput(file); return NULL; } return socki_lookup(inode); } extern __inline__ void sockfd_put(struct socket *sock) { fput(sock->file); } static inline int msghdr_from_user32_to_kern(struct msghdr *kmsg, struct msghdr32 *umsg) { u32 tmp1, tmp2, tmp3; int err; err = get_user(tmp1, &umsg->msg_name); err |= __get_user(tmp2, &umsg->msg_iov); err |= __get_user(tmp3, &umsg->msg_control); if (err) return -EFAULT; kmsg->msg_name = (void *)A(tmp1); kmsg->msg_iov = (struct iovec *)A(tmp2); kmsg->msg_control = (void *)A(tmp3); err = get_user(kmsg->msg_namelen, &umsg->msg_namelen); err |= get_user(kmsg->msg_iovlen, &umsg->msg_iovlen); err |= get_user(kmsg->msg_controllen, &umsg->msg_controllen); err |= get_user(kmsg->msg_flags, &umsg->msg_flags); return err; } static inline int iov_from_user32_to_kern(struct iovec *kiov, struct iovec32 *uiov32, int niov) { int tot_len = 0; while(niov > 0) { u32 len, buf; if(get_user(len, &uiov32->iov_len) || get_user(buf, &uiov32->iov_base)) { tot_len = -EFAULT; break; } tot_len += len; kiov->iov_base = (void *)A(buf); kiov->iov_len = (__kernel_size_t) len; uiov32++; kiov++; niov--; } return tot_len; } /* I've named the args so it is easy to tell whose space the pointers are in. */ static int verify_iovec32(struct msghdr *kern_msg, struct iovec *kern_iov, char *kern_address, int mode) { int tot_len; if(kern_msg->msg_namelen) { if(mode==VERIFY_READ) { int err = move_addr_to_kernel(kern_msg->msg_name, kern_msg->msg_namelen, kern_address); if(err < 0) return err; } kern_msg->msg_name = kern_address; } else kern_msg->msg_name = NULL; if(kern_msg->msg_iovlen > UIO_FASTIOV) { kern_iov = kmalloc(kern_msg->msg_iovlen * sizeof(struct iovec), GFP_KERNEL); if(!kern_iov) return -ENOMEM; } tot_len = iov_from_user32_to_kern(kern_iov, (struct iovec32 *)kern_msg->msg_iov, kern_msg->msg_iovlen); if(tot_len >= 0) kern_msg->msg_iov = kern_iov; else if(kern_msg->msg_iovlen > UIO_FASTIOV) kfree(kern_iov); return tot_len; } /* There is a lot of hair here because the alignment rules (and * thus placement) of cmsg headers and length are different for * 32-bit apps. -DaveM */ static int cmsghdr_from_user32_to_kern(struct msghdr *kmsg, unsigned char *stackbuf, int stackbuf_size) { struct cmsghdr32 *ucmsg; struct cmsghdr *kcmsg, *kcmsg_base; __kernel_size_t32 ucmlen; __kernel_size_t kcmlen, tmp; kcmlen = 0; kcmsg_base = kcmsg = (struct cmsghdr *)stackbuf; ucmsg = CMSG32_FIRSTHDR(kmsg); while(ucmsg != NULL) { if(get_user(ucmlen, &ucmsg->cmsg_len)) return -EFAULT; /* Catch bogons. */ if(CMSG32_ALIGN(ucmlen) < CMSG32_ALIGN(sizeof(struct cmsghdr32))) return -EINVAL; if((unsigned long)(((char *)ucmsg - (char *)kmsg->msg_control) + ucmlen) > kmsg->msg_controllen) return -EINVAL; tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) + CMSG_ALIGN(sizeof(struct cmsghdr))); kcmlen += tmp; ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen); } if (kcmlen == 0) return -EINVAL; /* The kcmlen holds the 64-bit version of the control length. * It may not be modified as we do not stick it into the kmsg * until we have successfully copied over all of the data * from the user. */ if (kcmlen > stackbuf_size) kcmsg_base = kcmsg = kmalloc(kcmlen, GFP_KERNEL); if (kcmsg == NULL) return -ENOBUFS; /* Now copy them over neatly. */ memset(kcmsg, 0, kcmlen); ucmsg = CMSG32_FIRSTHDR(kmsg); while (ucmsg != NULL) { __get_user(ucmlen, &ucmsg->cmsg_len); tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) + CMSG_ALIGN(sizeof(struct cmsghdr))); kcmsg->cmsg_len = tmp; __get_user(kcmsg->cmsg_level, &ucmsg->cmsg_level); __get_user(kcmsg->cmsg_type, &ucmsg->cmsg_type); /* Copy over the data. */ if(copy_from_user(CMSG_DATA(kcmsg), CMSG32_DATA(ucmsg), (ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))))) goto out_free_efault; /* Advance. */ kcmsg = (struct cmsghdr *)((char *)kcmsg + CMSG_ALIGN(tmp)); ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen); } /* Ok, looks like we made it. Hook it up and return success. */ kmsg->msg_control = kcmsg_base; kmsg->msg_controllen = kcmlen; return 0; out_free_efault: if(kcmsg_base != (struct cmsghdr *)stackbuf) kfree(kcmsg_base); return -EFAULT; } asmlinkage long sys32_sendmsg(int fd, struct msghdr32* user_msg, unsigned int user_flags) { struct socket *sock; char address[MAX_SOCK_ADDR]; struct iovec iov[UIO_FASTIOV]; unsigned char ctl[sizeof(struct cmsghdr) + 20]; unsigned char *ctl_buf = ctl; struct msghdr kern_msg; int err, total_len; PPCDBG(PPCDBG_SYS32, "sys32_sendmsg - entered - fd=%x, user_msg@=%p, user_flags=%x \n", fd, user_msg, user_flags); if(msghdr_from_user32_to_kern(&kern_msg, user_msg)) return -EFAULT; if(kern_msg.msg_iovlen > UIO_MAXIOV) return -EMSGSIZE; err = verify_iovec32(&kern_msg, iov, address, VERIFY_READ); if (err < 0) goto out; total_len = err; if(kern_msg.msg_controllen) { err = cmsghdr_from_user32_to_kern(&kern_msg, ctl, sizeof(ctl)); if(err) goto out_freeiov; ctl_buf = kern_msg.msg_control; } kern_msg.msg_flags = user_flags; sock = sockfd_lookup(fd, &err); if (sock != NULL) { if (sock->file->f_flags & O_NONBLOCK) kern_msg.msg_flags |= MSG_DONTWAIT; err = sock_sendmsg(sock, &kern_msg, total_len); sockfd_put(sock); } /* N.B. Use kfree here, as kern_msg.msg_controllen might change? */ if(ctl_buf != ctl) kfree(ctl_buf); out_freeiov: if(kern_msg.msg_iov != iov) kfree(kern_msg.msg_iov); out: PPCDBG(PPCDBG_SYS32, "sys32_sendmsg - exited w/ %lx \n", err); return err; } static void put_cmsg32(struct msghdr *kmsg, int level, int type, int len, void *data) { struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control; struct cmsghdr32 cmhdr; int cmlen = CMSG32_LEN(len); if (cm == NULL || kmsg->msg_controllen < sizeof(*cm)) { kmsg->msg_flags |= MSG_CTRUNC; return; } if (kmsg->msg_controllen < cmlen) { kmsg->msg_flags |= MSG_CTRUNC; cmlen = kmsg->msg_controllen; } cmhdr.cmsg_level = level; cmhdr.cmsg_type = type; cmhdr.cmsg_len = cmlen; if (copy_to_user(cm, &cmhdr, sizeof cmhdr)) return; if (copy_to_user(CMSG32_DATA(cm), data, cmlen - sizeof(struct cmsghdr32))) return; cmlen = CMSG32_SPACE(len); kmsg->msg_control += cmlen; kmsg->msg_controllen -= cmlen; } static void scm_detach_fds32(struct msghdr *kmsg, struct scm_cookie *scm) { struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control; int fdmax = (kmsg->msg_controllen - sizeof(struct cmsghdr32)) / sizeof(int); int fdnum = scm->fp->count; struct file **fp = scm->fp->fp; int *cmfptr; int err = 0, i; if (fdnum < fdmax) fdmax = fdnum; for (i = 0, cmfptr = (int *) CMSG32_DATA(cm); i < fdmax; i++, cmfptr++) { int new_fd; err = get_unused_fd(); if (err < 0) break; new_fd = err; err = put_user(new_fd, cmfptr); if (err) { put_unused_fd(new_fd); break; } /* Bump the usage count and install the file. */ get_file(fp[i]); fd_install(new_fd, fp[i]); } if (i > 0) { int cmlen = CMSG32_LEN(i * sizeof(int)); if (!err) err = put_user(SOL_SOCKET, &cm->cmsg_level); if (!err) err = put_user(SCM_RIGHTS, &cm->cmsg_type); if (!err) err = put_user(cmlen, &cm->cmsg_len); if (!err) { cmlen = CMSG32_SPACE(i * sizeof(int)); kmsg->msg_control += cmlen; kmsg->msg_controllen -= cmlen; } } if (i < fdnum) kmsg->msg_flags |= MSG_CTRUNC; /* * All of the files that fit in the message have had their * usage counts incremented, so we just free the list. */ __scm_destroy(scm); } /* In these cases we (currently) can just copy to data over verbatim * because all CMSGs created by the kernel have well defined types which * have the same layout in both the 32-bit and 64-bit API. One must add * some special cased conversions here if we start sending control messages * with incompatible types. * * SCM_RIGHTS and SCM_CREDENTIALS are done by hand in recvmsg32 right after * we do our work. The remaining cases are: * * SOL_IP IP_PKTINFO struct in_pktinfo 32-bit clean * IP_TTL int 32-bit clean * IP_TOS __u8 32-bit clean * IP_RECVOPTS variable length 32-bit clean * IP_RETOPTS variable length 32-bit clean * (these last two are clean because the types are defined * by the IPv4 protocol) * IP_RECVERR struct sock_extended_err + * struct sockaddr_in 32-bit clean * SOL_IPV6 IPV6_RECVERR struct sock_extended_err + * struct sockaddr_in6 32-bit clean * IPV6_PKTINFO struct in6_pktinfo 32-bit clean * IPV6_HOPLIMIT int 32-bit clean * IPV6_FLOWINFO u32 32-bit clean * IPV6_HOPOPTS ipv6 hop exthdr 32-bit clean * IPV6_DSTOPTS ipv6 dst exthdr(s) 32-bit clean * IPV6_RTHDR ipv6 routing exthdr 32-bit clean * IPV6_AUTHHDR ipv6 auth exthdr 32-bit clean */ static void cmsg32_recvmsg_fixup(struct msghdr *kmsg, unsigned long orig_cmsg_uptr) { unsigned char *workbuf, *wp; unsigned long bufsz, space_avail; struct cmsghdr *ucmsg; bufsz = ((unsigned long)kmsg->msg_control) - orig_cmsg_uptr; space_avail = kmsg->msg_controllen + bufsz; wp = workbuf = kmalloc(bufsz, GFP_KERNEL); if(workbuf == NULL) goto fail; /* To make this more sane we assume the kernel sends back properly * formatted control messages. Because of how the kernel will truncate * the cmsg_len for MSG_TRUNC cases, we need not check that case either. */ ucmsg = (struct cmsghdr *) orig_cmsg_uptr; while(((unsigned long)ucmsg) <= (((unsigned long)kmsg->msg_control) - sizeof(struct cmsghdr))) { struct cmsghdr32 *kcmsg32 = (struct cmsghdr32 *) wp; int clen64, clen32; /* UCMSG is the 64-bit format CMSG entry in user-space. * KCMSG32 is within the kernel space temporary buffer * we use to convert into a 32-bit style CMSG. */ __get_user(kcmsg32->cmsg_len, &ucmsg->cmsg_len); __get_user(kcmsg32->cmsg_level, &ucmsg->cmsg_level); __get_user(kcmsg32->cmsg_type, &ucmsg->cmsg_type); clen64 = kcmsg32->cmsg_len; copy_from_user(CMSG32_DATA(kcmsg32), CMSG_DATA(ucmsg), clen64 - CMSG_ALIGN(sizeof(*ucmsg))); clen32 = ((clen64 - CMSG_ALIGN(sizeof(*ucmsg))) + CMSG32_ALIGN(sizeof(struct cmsghdr32))); kcmsg32->cmsg_len = clen32; switch (kcmsg32->cmsg_type) { /* * The timestamp type's data needs to be converted * from 64-bit time values to 32-bit time values */ case SO_TIMESTAMP: { __kernel_time_t32* ptr_time32 = CMSG32_DATA(kcmsg32); __kernel_time_t* ptr_time = CMSG_DATA(ucmsg); *ptr_time32 = *ptr_time; *(ptr_time32+1) = *(ptr_time+1); kcmsg32->cmsg_len -= 2*(sizeof(__kernel_time_t) - sizeof(__kernel_time_t32)); } default:; } ucmsg = (struct cmsghdr *) (((char *)ucmsg) + CMSG_ALIGN(clen64)); wp = (((char *)kcmsg32) + CMSG32_ALIGN(kcmsg32->cmsg_len)); } /* Copy back fixed up data, and adjust pointers. */ bufsz = (wp - workbuf); copy_to_user((void *)orig_cmsg_uptr, workbuf, bufsz); kmsg->msg_control = (struct cmsghdr *) (((char *)orig_cmsg_uptr) + bufsz); kmsg->msg_controllen = space_avail - bufsz; kfree(workbuf); return; fail: /* If we leave the 64-bit format CMSG chunks in there, * the application could get confused and crash. So to * ensure greater recovery, we report no CMSGs. */ kmsg->msg_controllen += bufsz; kmsg->msg_control = (void *) orig_cmsg_uptr; } asmlinkage long sys32_recvmsg(int fd, struct msghdr32* user_msg, unsigned int user_flags) { struct iovec iovstack[UIO_FASTIOV]; struct msghdr kern_msg; char addr[MAX_SOCK_ADDR]; struct socket *sock; struct iovec *iov = iovstack; struct sockaddr *uaddr; int *uaddr_len; unsigned long cmsg_ptr; int err, total_len, len = 0; PPCDBG(PPCDBG_SYS32, "sys32_recvmsg - entered - fd=%x, user_msg@=%p, user_flags=%x \n", fd, user_msg, user_flags); if(msghdr_from_user32_to_kern(&kern_msg, user_msg)) return -EFAULT; if(kern_msg.msg_iovlen > UIO_MAXIOV) return -EMSGSIZE; uaddr = kern_msg.msg_name; uaddr_len = &user_msg->msg_namelen; err = verify_iovec32(&kern_msg, iov, addr, VERIFY_WRITE); if (err < 0) goto out; total_len = err; cmsg_ptr = (unsigned long) kern_msg.msg_control; kern_msg.msg_flags = 0; sock = sockfd_lookup(fd, &err); if (sock != NULL) { struct scm_cookie scm; if (sock->file->f_flags & O_NONBLOCK) user_flags |= MSG_DONTWAIT; memset(&scm, 0, sizeof(scm)); err = sock->ops->recvmsg(sock, &kern_msg, total_len, user_flags, &scm); if(err >= 0) { len = err; if(!kern_msg.msg_control) { if(sock->passcred || scm.fp) kern_msg.msg_flags |= MSG_CTRUNC; if(scm.fp) __scm_destroy(&scm); } else { /* If recvmsg processing itself placed some * control messages into user space, it's is * using 64-bit CMSG processing, so we need * to fix it up before we tack on more stuff. */ if((unsigned long) kern_msg.msg_control != cmsg_ptr) cmsg32_recvmsg_fixup(&kern_msg, cmsg_ptr); /* Wheee... */ if(sock->passcred) put_cmsg32(&kern_msg, SOL_SOCKET, SCM_CREDENTIALS, sizeof(scm.creds), &scm.creds); if(scm.fp != NULL) scm_detach_fds32(&kern_msg, &scm); } } sockfd_put(sock); } if (uaddr != NULL && err >= 0 && kern_msg.msg_namelen) err = move_addr_to_user(addr, kern_msg.msg_namelen, uaddr, uaddr_len); if(cmsg_ptr != 0 && err >= 0) { unsigned long ucmsg_ptr = ((unsigned long)kern_msg.msg_control); __kernel_size_t32 uclen = (__kernel_size_t32) (ucmsg_ptr - cmsg_ptr); err |= __put_user(uclen, &user_msg->msg_controllen); } if(err >= 0) err = __put_user(kern_msg.msg_flags, &user_msg->msg_flags); if(kern_msg.msg_iov != iov) kfree(kern_msg.msg_iov); out: if(err < 0) return err; PPCDBG(PPCDBG_SYS32, "sys32_recvmsg - exited w/ %lx \n", len); return len; } /* * count32() counts the number of arguments/envelopes */ static int count32(u32 * argv, int max) { int i = 0; if (argv != NULL) { for (;;) { u32 p; int error; error = get_user(p,argv); if (error) return error; if (!p) break; argv++; if (++i > max) return -E2BIG; } } return i; } /* * 'copy_string32()' copies argument/envelope strings from user * memory to free pages in kernel mem. These are in a format ready * to be put directly into the top of new user memory. */ static int copy_strings32(int argc, u32 * argv, struct linux_binprm *bprm) { while (argc-- > 0) { u32 str; int len; unsigned long pos; if (get_user(str, argv + argc) || !str || !(len = strnlen_user((char *)A(str), bprm->p))) return -EFAULT; if (bprm->p < len) return -E2BIG; bprm->p -= len; pos = bprm->p; while (len) { char *kaddr; struct page *page; int offset, bytes_to_copy, new, err; offset = pos % PAGE_SIZE; page = bprm->page[pos / PAGE_SIZE]; new = 0; if (!page) { page = alloc_page(GFP_USER); bprm->page[pos / PAGE_SIZE] = page; if (!page) return -ENOMEM; new = 1; } kaddr = (char *)kmap(page); if (new && offset) memset(kaddr, 0, offset); bytes_to_copy = PAGE_SIZE - offset; if (bytes_to_copy > len) { bytes_to_copy = len; if (new) memset(kaddr+offset+len, 0, PAGE_SIZE-offset-len); } err = copy_from_user(kaddr + offset, (char *)A(str), bytes_to_copy); flush_page_to_ram(page); kunmap((unsigned long)kaddr); if (err) return -EFAULT; pos += bytes_to_copy; str += bytes_to_copy; len -= bytes_to_copy; } } return 0; } /* * sys32_execve() executes a new program. */ static int do_execve32(char * filename, u32 * argv, u32 * envp, struct pt_regs * regs) { struct linux_binprm bprm; struct file * file; int retval; int i; bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); memset(bprm.page, 0, MAX_ARG_PAGES * sizeof(bprm.page[0])); file = open_exec(filename); retval = PTR_ERR(file); if (IS_ERR(file)) return retval; bprm.file = file; bprm.filename = filename; bprm.sh_bang = 0; bprm.loader = 0; bprm.exec = 0; if ((bprm.argc = count32(argv, bprm.p / sizeof(u32))) < 0) { allow_write_access(file); fput(file); return bprm.argc; } if ((bprm.envc = count32(envp, bprm.p / sizeof(u32))) < 0) { allow_write_access(file); fput(file); return bprm.argc; } retval = prepare_binprm(&bprm); if (retval < 0) goto out; retval = copy_strings_kernel(1, &bprm.filename, &bprm); if (retval < 0) goto out; bprm.exec = bprm.p; retval = copy_strings32(bprm.envc, envp, &bprm); if (retval < 0) goto out; retval = copy_strings32(bprm.argc, argv, &bprm); if (retval < 0) goto out; retval = search_binary_handler(&bprm, regs); if (retval >= 0) /* execve success */ return retval; out: /* Something went wrong, return the inode and free the argument pages*/ allow_write_access(bprm.file); if (bprm.file) fput(bprm.file); for (i=0 ; imsr & MSR_FP) giveup_fpu(current); error = do_execve32(filename, (u32*) a1, (u32*) a2, regs); if (error == 0) current->ptrace &= ~PT_DTRACE; putname(filename); out: return error; } /* Set up a thread for executing a new program. */ void start_thread32(struct pt_regs* regs, unsigned long nip, unsigned long sp) { set_fs(USER_DS); memset(regs->gpr, 0, sizeof(regs->gpr)); memset(®s->ctr, 0, 4 * sizeof(regs->ctr)); regs->nip = nip; regs->gpr[1] = sp; regs->msr = MSR_USER32; #ifndef CONFIG_SMP if (last_task_used_math == current) last_task_used_math = 0; #endif current->thread.fpscr = 0; } extern asmlinkage int sys_prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5); /* Note: it is necessary to treat option as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_prctl(u32 option, u32 arg2, u32 arg3, u32 arg4, u32 arg5) { PPCDBG(PPCDBG_SYS32, "sys32_prctl - running - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); return sys_prctl((int)option, (unsigned long) arg2, (unsigned long) arg3, (unsigned long) arg4, (unsigned long) arg5); } extern asmlinkage int sys_sched_rr_get_interval(pid_t pid, struct timespec *interval); /* Note: it is necessary to treat pid as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage int sys32_sched_rr_get_interval(u32 pid, struct timespec32 *interval) { struct timespec t; int ret; mm_segment_t old_fs = get_fs (); PPCDBG(PPCDBG_SYS32, "sys32_sched_rr_get_interval - entered - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); set_fs (KERNEL_DS); ret = sys_sched_rr_get_interval((int)pid, &t); set_fs (old_fs); if (put_user (t.tv_sec, &interval->tv_sec) || __put_user (t.tv_nsec, &interval->tv_nsec)) return -EFAULT; PPCDBG(PPCDBG_SYS32, "sys32_sched_rr_get_interval - exited - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); return ret; } extern asmlinkage int sys_pciconfig_read(unsigned long bus, unsigned long dfn, unsigned long off, unsigned long len, unsigned char *buf); asmlinkage int sys32_pciconfig_read(u32 bus, u32 dfn, u32 off, u32 len, u32 ubuf) { PPCDBG(PPCDBG_SYS32, "sys32_pciconfig_read - running - pid=%ld current=%lx comm=%s\n", current->pid, current, current->comm); return sys_pciconfig_read((unsigned long) bus, (unsigned long) dfn, (unsigned long) off, (unsigned long) len, (unsigned char *)AA(ubuf)); } extern asmlinkage int sys_pciconfig_write(unsigned long bus, unsigned long dfn, unsigned long off, unsigned long len, unsigned char *buf); asmlinkage int sys32_pciconfig_write(u32 bus, u32 dfn, u32 off, u32 len, u32 ubuf) { PPCDBG(PPCDBG_SYS32, "sys32_pciconfig_write - running - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); return sys_pciconfig_write((unsigned long) bus, (unsigned long) dfn, (unsigned long) off, (unsigned long) len, (unsigned char *)AA(ubuf)); } extern asmlinkage int sys_newuname(struct new_utsname * name); asmlinkage int ppc64_newuname(struct new_utsname * name) { int errno = sys_newuname(name); if (current->personality == PER_LINUX32 && !errno) { if(copy_to_user(name->machine, "ppc\0\0", 8)) { errno = -EFAULT; } } return errno; } extern asmlinkage long sys_personality(unsigned long); asmlinkage int sys32_personality(unsigned long personality) { int ret; if (current->personality == PER_LINUX32 && personality == PER_LINUX) personality = PER_LINUX32; ret = sys_personality(personality); if (ret == PER_LINUX32) ret = PER_LINUX; return ret; } extern asmlinkage long sys_access(const char * filename, int mode); /* Note: it is necessary to treat mode as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_access(const char * filename, u32 mode) { return sys_access(filename, (int)mode); } extern asmlinkage int sys_clone(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs); /* Note: it is necessary to treat p1, p2, p3, p4, p5, p7, and regs as unsigned ints, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage int sys32_clone(u32 p1, u32 p2, u32 p3, u32 p4, u32 p5, u32 p6, struct pt_regs *regs) { return sys_clone((int)p1, (int)p2, (int)p3, (int)p4, (int)p5, (int)p6, regs); } extern asmlinkage long sys_creat(const char * pathname, int mode); /* Note: it is necessary to treat mode as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_creat(const char * pathname, u32 mode) { return sys_creat(pathname, (int)mode); } extern asmlinkage long sys_exit(int error_code); /* Note: it is necessary to treat error_code as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_exit(u32 error_code) { return sys_exit((int)error_code); } extern asmlinkage long sys_wait4(pid_t pid, unsigned int * stat_addr, int options, struct rusage * ru); /* Note: it is necessary to treat pid and options as unsigned ints, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_wait4(u32 pid, unsigned int * stat_addr, u32 options, struct rusage * ru) { PPCDBG(PPCDBG_SYS32, "sys32_wait4 - running - pid=%ld current=%lx comm=%s \n", current->pid, current, current->comm); if (!ru) return sys_wait4((int)pid, stat_addr, options, NULL); else { struct rusage r; int ret; unsigned int status; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_wait4((int)pid, stat_addr ? &status : NULL, options, &r); set_fs (old_fs); if (put_rusage ((struct rusage32 *)ru, &r)) return -EFAULT; if (stat_addr && put_user (status, stat_addr)) return -EFAULT; return ret; } } extern asmlinkage long sys_waitpid(pid_t pid, unsigned int * stat_addr, int options); /* Note: it is necessary to treat pid and options as unsigned ints, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_waitpid(u32 pid, unsigned int * stat_addr, u32 options) { return sys_waitpid((int)pid, stat_addr, (int)options); } extern asmlinkage int sys_fork(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs); /* Note: it is necessary to treat p1, p2, p3, p4, p5, and p6 as unsigned ints, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage int sys32_fork(u32 p1, u32 p2, u32 p3, u32 p4, u32 p5, u32 p6, struct pt_regs *regs) { return sys_fork((int)p1, (int)p2, (int)p3, (int)p4, (int)p5, (int)p6, regs); } extern asmlinkage long sys_getgroups(int gidsetsize, gid_t *grouplist); /* Note: it is necessary to treat gidsetsize as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_getgroups(u32 gidsetsize, gid_t *grouplist) { return sys_getgroups((int)gidsetsize, grouplist); } extern asmlinkage long sys_getpgid(pid_t pid); /* Note: it is necessary to treat pid as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_getpgid(u32 pid) { return sys_getpgid((int)pid); } extern asmlinkage long sys_getpriority(int which, int who); /* Note: it is necessary to treat which and who as unsigned ints, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_getpriority(u32 which, u32 who) { return sys_getpriority((int)which, (int)who); } extern asmlinkage long sys_getsid(pid_t pid); /* Note: it is necessary to treat pid as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_getsid(u32 pid) { return sys_getsid((int)pid); } extern asmlinkage long sys_kill(int pid, int sig); /* Note: it is necessary to treat pid and sig as unsigned ints, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_kill(u32 pid, u32 sig) { return sys_kill((int)pid, (int)sig); } extern asmlinkage long sys_mkdir(const char * pathname, int mode); /* Note: it is necessary to treat mode as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_mkdir(const char * pathname, u32 mode) { return sys_mkdir(pathname, (int)mode); } extern asmlinkage long sys_mlockall(int flags); /* Note: it is necessary to treat flags as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_mlockall(u32 flags) { return sys_mlockall((int)flags); } extern asmlinkage long sys_msync(unsigned long start, size_t len, int flags); /* Note: it is necessary to treat flags as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_msync(unsigned long start, size_t len, u32 flags) { return sys_msync(start, len, (int)flags); } extern asmlinkage long sys_nice(int increment); /* Note: it is necessary to treat increment as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_nice(u32 increment) { return sys_nice((int)increment); } /* * This is just a version for 32-bit applications which does * not force O_LARGEFILE on. */ long sys32_open(const char * filename, int flags, int mode) { char * tmp; int fd, error; tmp = getname(filename); fd = PTR_ERR(tmp); if (!IS_ERR(tmp)) { fd = get_unused_fd(); if (fd >= 0) { struct file * f = filp_open(tmp, flags, mode); error = PTR_ERR(f); if (IS_ERR(f)) goto out_error; fd_install(fd, f); } out: putname(tmp); } return fd; out_error: put_unused_fd(fd); fd = error; goto out; } extern asmlinkage long sys_readlink(const char * path, char * buf, int bufsiz); /* Note: it is necessary to treat bufsiz as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_readlink(const char * path, char * buf, u32 bufsiz) { return sys_readlink(path, buf, (int)bufsiz); } extern asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void * arg); /* Note: it is necessary to treat magic1 and magic2 as unsigned ints, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_reboot(u32 magic1, u32 magic2, unsigned int cmd, void * arg) { return sys_reboot((int)magic1, (int)magic2, cmd, arg); } extern asmlinkage long sys_sched_get_priority_max(int policy); /* Note: it is necessary to treat option as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_sched_get_priority_max(u32 policy) { return sys_sched_get_priority_max((int)policy); } extern asmlinkage long sys_sched_get_priority_min(int policy); /* Note: it is necessary to treat policy as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_sched_get_priority_min(u32 policy) { return sys_sched_get_priority_min((int)policy); } extern asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param *param); /* Note: it is necessary to treat pid as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_sched_getparam(u32 pid, struct sched_param *param) { return sys_sched_getparam((int)pid, param); } extern asmlinkage long sys_sched_getscheduler(pid_t pid); /* Note: it is necessary to treat pid as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_sched_getscheduler(u32 pid) { return sys_sched_getscheduler((int)pid); } extern asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param *param); /* Note: it is necessary to treat pid as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_sched_setparam(u32 pid, struct sched_param *param) { return sys_sched_setparam((int)pid, param); } extern asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, struct sched_param *param); /* Note: it is necessary to treat pid and policy as unsigned ints, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_sched_setscheduler(u32 pid, u32 policy, struct sched_param *param) { return sys_sched_setscheduler((int)pid, (int)policy, param); } extern asmlinkage long sys_setdomainname(char *name, int len); /* Note: it is necessary to treat len as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_setdomainname(char *name, u32 len) { return sys_setdomainname(name, (int)len); } extern asmlinkage long sys_setgroups(int gidsetsize, gid_t *grouplist); /* Note: it is necessary to treat gidsetsize as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_setgroups(u32 gidsetsize, gid_t *grouplist) { return sys_setgroups((int)gidsetsize, grouplist); } extern asmlinkage long sys_sethostname(char *name, int len); /* Note: it is necessary to treat len as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_sethostname(char *name, u32 len) { return sys_sethostname(name, (int)len); } extern asmlinkage long sys_setpgid(pid_t pid, pid_t pgid); /* Note: it is necessary to treat pid and pgid as unsigned ints, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_setpgid(u32 pid, u32 pgid) { return sys_setpgid((int)pid, (int)pgid); } extern asmlinkage long sys_setpriority(int which, int who, int niceval); /* Note: it is necessary to treat which, who, and niceval as unsigned ints, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_setpriority(u32 which, u32 who, u32 niceval) { return sys_setpriority((int)which, (int)who, (int)niceval); } extern asmlinkage long sys_ssetmask(int newmask); /* Note: it is necessary to treat newmask as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_ssetmask(u32 newmask) { return sys_ssetmask((int) newmask); } extern asmlinkage long sys_swapon(const char * specialfile, int swap_flags); /* Note: it is necessary to treat swap_flags as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_swapon(const char * specialfile, u32 swap_flags) { return sys_swapon(specialfile, (int)swap_flags); } extern asmlinkage long sys_syslog(int type, char * buf, int len); /* Note: it is necessary to treat type and len as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_syslog(u32 type, char * buf, u32 len) { return sys_syslog((int)type, buf, (int)len); } extern asmlinkage long sys_umask(int mask); /* Note: it is necessary to treat mask as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_umask(u32 mask) { return sys_umask((int)mask); } extern asmlinkage long sys_umount(char * name, int flags); /* Note: it is necessary to treat flags as an unsigned int, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage long sys32_umount(char * name, u32 flags) { return sys_umount(name, (int)flags); } extern asmlinkage int sys_vfork(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs); /* Note: it is necessary to treat p1, p2, p3, p4, p5, and p6 as unsigned ints, * with the corresponding cast to a signed int to insure that the * proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode) * and the register representation of a signed int (msr in 64-bit mode) is performed. */ asmlinkage int sys32_vfork(u32 p1, u32 p2, u32 p3, u32 p4, u32 p5, u32 p6, struct pt_regs *regs) { return sys_vfork((int)p1, (int)p2, (int)p3, (int)p4, (int)p5, (int)p6, regs); } extern asmlinkage ssize_t sys_pread(unsigned int fd, char * buf, size_t count, loff_t pos); extern asmlinkage ssize_t sys_pwrite(unsigned int fd, const char * buf, size_t count, loff_t pos); asmlinkage ssize_t32 sys32_pread(unsigned int fd, char *ubuf, __kernel_size_t32 count, u32 reg6, u32 poshi, u32 poslo) { return sys_pread(fd, ubuf, count, ((loff_t)AA(poshi) << 32) | AA(poslo)); } asmlinkage ssize_t32 sys32_pwrite(unsigned int fd, char *ubuf, __kernel_size_t32 count, u32 reg6 ,u32 poshi, u32 poslo) { return sys_pwrite(fd, ubuf, count, ((loff_t)AA(poshi) << 32) | AA(poslo)); } extern ssize_t sys_readahead(int fd, loff_t offset, size_t count); ssize_t32 sys32_readahead(int fd, u32 r4, u32 offhi, u32 offlo, u32 count) { return sys_readahead(fd, ((loff_t)offhi << 32) | offlo, AA(count)); } extern asmlinkage long sys_truncate(const char * path, unsigned long length); extern asmlinkage long sys_ftruncate(unsigned int fd, unsigned long length); asmlinkage int sys32_truncate64(const char * path, u32 reg4, unsigned long high, unsigned long low) { if ((int)high < 0) return -EINVAL; else return sys_truncate(path, (high << 32) | low); } asmlinkage int sys32_ftruncate64(unsigned int fd, u32 reg4, unsigned long high, unsigned long low) { if ((int)high < 0) return -EINVAL; else return sys_ftruncate(fd, (high << 32) | low); } asmlinkage long sys32_fcntl64(unsigned int fd, unsigned int cmd, unsigned long arg) { if (cmd >= F_GETLK64 && cmd <= F_SETLKW64) return sys_fcntl(fd, cmd + F_GETLK - F_GETLK64, arg); return sys32_fcntl(fd, cmd, arg); } struct __sysctl_args32 { u32 name; int nlen; u32 oldval; u32 oldlenp; u32 newval; u32 newlen; u32 __unused[4]; }; extern asmlinkage long sys32_sysctl(struct __sysctl_args32 *args) { struct __sysctl_args32 tmp; int error; size_t oldlen, *oldlenp = NULL; unsigned long addr = (((long)&args->__unused[0]) + 7) & ~7; if (copy_from_user(&tmp, args, sizeof(tmp))) return -EFAULT; if (tmp.oldval && tmp.oldlenp) { /* Duh, this is ugly and might not work if sysctl_args is in read-only memory, but do_sysctl does indirectly a lot of uaccess in both directions and we'd have to basically copy the whole sysctl.c here, and glibc's __sysctl uses rw memory for the structure anyway. */ if (get_user(oldlen, (u32 *)A(tmp.oldlenp)) || put_user(oldlen, (size_t *)addr)) return -EFAULT; oldlenp = (size_t *)addr; } lock_kernel(); error = do_sysctl((int *)A(tmp.name), tmp.nlen, (void *)A(tmp.oldval), oldlenp, (void *)A(tmp.newval), tmp.newlen); unlock_kernel(); if (oldlenp) { if (!error) { if (get_user(oldlen, (size_t *)addr) || put_user(oldlen, (u32 *)A(tmp.oldlenp))) error = -EFAULT; } copy_to_user(args->__unused, tmp.__unused, sizeof(tmp.__unused)); } return error; } asmlinkage long sys32_time(__kernel_time_t32* tloc) { __kernel_time_t32 secs; struct timeval tv; do_gettimeofday( &tv ); secs = tv.tv_sec; if (tloc) { if (put_user(secs,tloc)) secs = -EFAULT; } return secs; } extern unsigned long sys_mmap(unsigned long addr, size_t len, unsigned long prot, unsigned long flags, unsigned long fd, off_t offset); unsigned long sys32_mmap2(unsigned long addr, size_t len, unsigned long prot, unsigned long flags, unsigned long fd, unsigned long pgoff) { /* This should remain 12 even if PAGE_SIZE changes */ return sys_mmap(addr, len, prot, flags, fd, pgoff << 12); }