

327432-004

Enhanced Serial Peripheral
Interface (eSPI)

Interface Base Specification (for Client and Server Platforms)

January 2016

Revision 1.0

2 327432-004

Intel hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right to sublicense),
under its copyrights to view, download, and reproduce the Enhanced Serial Peripheral Interface (eSPI) Specification
("Specification"). You are not granted any other rights or licenses, by implication, estoppel, or otherwise, and you may not
create any derivative works of the Specification.
The Specification is provided "as is," and Intel makes no representations or warranties, express or implied, including warranties
of merchantability, fitness for a particular purpose, non-infringement, or title. Intel is not liable for any direct, indirect, special,
incidental, or consequential damages arising out of any use of the Specification, or its performance or implementation.
Intel retains ownership of all of its intellectual property rights in the Specification and retains the right to make changes to the
Specification at any time. No license is granted to use Intel’s name, trademarks, or patents.
If you provide feedback or suggestions on the Specification, you grant Intel a perpetual, non-terminable, fully-paid,
nonexclusive, worldwide license, with the right to sublicense, under all applicable intellectual property rights to use the feedback
and suggestions, without any notice, consent, or accounting. You represent and warrant that you own, or have sufficient rights
from the owner of, the feedback and suggestions, and the intellectual property rights in them, to grant the above license.
This agreement is governed by Delaware law, without reference to choice of law principles. Any disputes relating to this
agreement must be resolved in the federal or state courts in Delaware and you consent, and will not object, to the exclusive
personal jurisdiction of the courts in Delaware.
This agreement is the entire agreement of the parties regarding the Specification and supersedes all prior agreements or
representations.
This agreement is hosted at the following location: http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=21353

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or
service activation. Learn more at intel.com, or from the OEM or retailer.
No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any
damages resulting from such losses.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.
Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or by visiting www.intel.com/design/literature.htm.
Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2016, Intel Corporation. All Rights Reserved

http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=21353
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

327432-004 3

Contents
1 Glossary ... 8

2 Introduction .. 9
2.1 Requirements ... 12

3 Architecture Overview .. 14
3.1 System Topology ... 14
3.2 Architecture Descriptions .. 18
3.3 Pin Descriptions .. 22

4 Bus Protocol .. 24
4.1 Basic Protocol ... 24
4.2 Command Phase ... 28
4.3 Turn-Around (TAR) .. 33
4.4 Response Phase .. 34

4.4.1 Response .. 34
4.4.2 Status .. 36

4.5 Alert Phase ... 39
4.6 Get Status Command ... 42
4.7 Get Configuration and Set Configuration Command 44
4.8 Non-Posted Transaction .. 45
4.9 Posted Transaction .. 49
4.10 WAIT STATE ... 51

5 Transaction Layer .. 53
5.1 Cycle Types and Packet Format ... 53

5.1.1 Cycle Types ... 54
5.1.2 Tag .. 57
5.1.3 Length .. 57
5.1.4 Address .. 58
5.1.5 Data ... 59

5.2 Channels .. 59
5.2.1 Peripheral Channel ... 59
5.2.2 Virtual Wires Channel .. 66
5.2.3 OOB (Tunneled SMBus) Message Channel 83
5.2.4 Run-time Flash Access Channel .. 85

5.3 Slave Buffer Management ... 89
5.4 Transaction Ordering Rule .. 91
5.5 Zero Length Read and Write ... 92

6 Link Layer ... 93
6.1 Single I/O, Dual I/O and Quad I/O Modes ... 93

4 327432-004

6.2 Cyclic Redundancy Check (CRC) .. 98

7 Slave Registers ... 100
7.1 Status Register .. 100
7.2 Capabilities and Configuration Registers .. 101

8 Operating Specification .. 114
8.1 Electrical Specification ... 114
8.2 Timing Parameters ... 115

9 System Architecture .. 118
9.1 Interrupts ... 118
9.2 Error Detection and Handling ... 118

9.2.1 Slave’s Detected Errors .. 119
9.2.2 Master’s Detected Errors .. 127

9.3 Reset .. 131
9.3.1 eSPI Reset# ... 131
9.3.2 In-band RESET Command ... 131

9.4 Power Management Event (PME) .. 132
9.5 Power Sequencing & Initialization ... 132

9.5.1 Exit from G3 ... 133

Figures

Figure 1: EC/BMC/SIO Communication over LPC ... 10
Figure 2: EC/BMC/SIO Communication over eSPI ... 11
Figure 3: Example of LPC bus and Additional eSPI bus behind the eSPI 12
Figure 4: Single Master-Single Slave with eSPI Reset# from Slave to Master 14
Figure 5: Single Master-Single Slave with eSPI Reset# from Master to Slave 15
Figure 6: Single Master-Multiple Slaves with Two eSPI Reset# 16
Figure 7: Single Master-Single Slave (Multiple Channels) 18
Figure 8: Single Master-Multiple Slaves ... 20
Figure 9: EC/BMC/SIO Communication Over eSPI Channels 21
Figure 10: Basic eSPI Protocol ... 24
Figure 11: Slave Triggered Transaction (Single Master-Slave) 25
Figure 12: Slave Triggered Transaction (Multiple Slave) 27
Figure 13: Command Opcode .. 28
Figure 14: Turn-Around Time (TAR = 2 clock) .. 33
Figure 15: Response Field ... 34
Figure 16: Slave’s Status Register Definition .. 36
Figure 17: Flow Diagram for a Slave to Master Peripheral Posted Write 40
Figure 18: Flow Diagram for a Back-to-back Slave to Master Peripheral Posted Write 40

327432-004 5

Figure 19: Flow Diagram for a Slave to Master Peripheral Posted Write passes Non-
posted .. 41

Figure 20: GET_STATUS Command ... 42
Figure 21: GET_STATUS Command (with Response Modifier) 43
Figure 22: GET_CONFIGURATION Command .. 44
Figure 23: SET_CONFIGURATION Command .. 44
Figure 24: Connected Master Initiated Non-Posted Transaction 45
Figure 25: Deferred Master Initiated Non-Posted Transaction 46
Figure 26: Master Initiated Short Non-Posted Transaction 47
Figure 27: Slave Initiated Non-Posted Transaction .. 48
Figure 28: Master Initiated Posted Transaction ... 49
Figure 29: Master Initiated Short Posted Transaction ... 49
Figure 30: Slave Initiated Posted Transaction ... 50
Figure 31: Pipelined Back-to-Back Bus Mastering Posted Write Transactions 51
Figure 32: Master Initiated Non-Posted Transaction Responded with WAIT STATE.... 52
Figure 33: General eSPI Packet Format ... 53
Figure 34: Peripheral Memory Write Packet Format ... 60
Figure 35: Short Peripheral Memory or Short I/O Write Packet Format (Master

Initiated only) ... 61
Figure 36: Peripheral Memory Read Packet Format ... 61
Figure 37: Short Peripheral Memory or Short I/O Read Packet Format (Master Initiated

only) 62
Figure 38: Peripheral Message Packet Format .. 62
Figure 39: Peripheral Memory or I/O Completion With and Without Data Packet

Format ... 63
Figure 40: LTR Message Format ... 65
Figure 41: Virtual Wire Packet Format ... 67
Figure 42: Virtual Wires at the Receiver .. 68
Figure 43: Virtual Wires with Sequence Communicated .. 79
Figure 44: Edge-triggered Interrupt through Virtual Wire 82
Figure 45: OOB (Tunneled SMBus) Message Packet Format 83
Figure 46: OOB MCTP Packet ... 84
Figure 47: OOB Generic SMBus Block Write Format ... 85
Figure 48: Flash Access Request Packet Format .. 86
Figure 49: Flash Access Completion Packet Format ... 86
Figure 50: Independent Flash SPI and eSPI Interface .. 87
Figure 51: Shared SPI and eSPI Interface .. 87
Figure 52: eSPI Slave Buffer Design (Conceptual) ... 91
Figure 53: Byte Ordering on the eSPI Bus .. 94
Figure 54: Single I/O Mode ... 95
Figure 55: Dual I/O Mode .. 96
Figure 56: Quad I/O Mode ... 97
Figure 57: CRC Polynomial Representation .. 98
Figure 58: Input Timing Diagram .. 116
Figure 59: Output Timing Diagram .. 117
Figure 60: Transaction with FATAL Error Response ... 125

6 327432-004

Figure 61: Transaction with Non-FATAL Error Response 125
Figure 62: Unexpected Chip Select# Deassertion ... 126
Figure 63: In-band RESET Command ... 132

Tables

Table 1: Table of Glossary ... 8
Table 2: eSPI Pin List ... 22
Table 3: Command Opcode Encodings ... 28
Table 4: Response Field Encodings ... 35
Table 5: Status Field Encodings .. 37
Table 6: Cycle Types .. 54
Table 7: Message Codes .. 63
Table 8: LTR Message Field Description ... 65
Table 9: Virtual Wire Index Definition.. 69
Table 10: System Event Virtual Wires for Index=2 .. 72
Table 11: System Event Virtual Wires for Index=3 .. 73
Table 12: System Event Virtual Wires for Index=4 .. 74
Table 13: System Event Virtual Wires for Index=5 .. 75
Table 14: System Event Virtual Wires for Index=6 .. 76
Table 15: System Event Virtual Wires for Index=7 .. 78
Table 16: Interrupt Event (IRQ) Virtual Wire Generation 80
Table 17: CRC Byte with Input Data D7:D0 (⊕ denotes logical XOR) 99
Table 18: Register Attribute Description ... 100
Table 19: Register Default Values Encoding Description 100
Table 20: Slave Registers ... 101
Table 21: Electrical Specification ... 114
Table 22: AC Timing Specification.. 115
Table 23: Slave’s Detected Errors .. 119
Table 24: Master’s Detected Errors .. 127

327432-004 7

Revision History

Document
Number

Revision
Number

Description Revision Date

31288 0.4 • Initial release. February 2012

31312 0.45 • Updated legal disclaimer. February 2012

327432-001EN 0.6 • Updated with review feedback. May 2012

327432-002 0.7 • Updated with 0.6 spec review feedback. October 2012

327432-003 0.75 • Updated with 0.7 spec review feedback. June 2013

327432-004

1.0

• Included ECN– Change Alert# pin behavior (10-1-
2014).

• Included ECN- Clarify OOB packet payload (10-1-
2014).

• Updated with 0.75 spec review feedback.

January 2016

§ §

Glossary

8 327432-004

1 Glossary
Table 1: Table of Glossary

Term Definition

TBD TBD

§

Introduction

327432-004 9

2 Introduction
This base specification describes the architecture details of the Enhanced Serial
Peripheral Interface (eSPI) bus interface for both client and server platforms.

The server platform specific support in addition to the base specification is described
in a separate addendum document.

The devices that can be supported over the eSPI interface includes but not necessary
limited to Embedded Controller (EC), Baseboard Management Controller (BMC),
Super-I/O (SIO) and Port-80 debug card.

Prior to this specification, Embedded Controller (EC), Baseboard Management
Controller (BMC) and Super I/O (SIO) are connected to the chipset through the Low
Pin Count (LPC) bus. Low Pin Count (LPC) bus is a legacy bus developed as the
replacement for Industry Standard Architecture (ISA) bus.

The specification generally refers to EC/BMC/SIO as the LPC device for the purpose of
illustrating the eSPI bus capabilities and the comparison to LPC bus. However, EC/SIO
is applicable for client platforms whereas BMC is generally associated with server
platforms.

Here are some LPC bus limitations which led to the development of eSPI:

• LPC consists of 7 required pins and 6 optional pins that makes up to a total of 13
pins to implement.

• Present implementations of the LPC include a fabrication process cost burden as it
is based on 3.3V I/O signaling technology.

• The frequency of the bus clock is fixed at 33 MHz. The fix LPC bandwidth of 133
Mbps is deemed insufficient to cater for the demands of new devices. Connecting
these devices to high speed interfaces such as PCI Express and USB3 is prohibitive
from cost perspective.

• There exist a significant number of sideband signals used for communication
between chipset and EC, BMC and SIO that amounts to significant pin cost.

The diagram below shows how an EC/BMC/SIO is connected to the LPC bus.

Introduction

10 327432-004

Figure 1: EC/BMC/SIO Communication over LPC

The eSPI specification provides a path for migrating LPC devices over to the new eSPI
interface. eSPI reuses the timing and electrical specification of Serial Peripheral
Interface (SPI) but with different protocol to meet a set of different requirements.

The diagram below shows how an EC/BMC/SIO can be connected to the eSPI bus.

Host CPU

LPC
Bridge

SMBus
Controller

GPIO Control
Logic

Out-of-Band
Processor

Power
Management

Controller

GPIO
Sources

EC/BMC/SIO

SPI Flash
Controller

Flash

LPC SM Bus Sideband
Pins

SPI

Host Chipset

Chip
Select#0

Introduction

327432-004 11

Figure 2: EC/BMC/SIO Communication over eSPI

Sideband pin communications between chipset and these devices will be converted to
in-band messages through the eSPI interface as part of the effort to reduce the
component pin count and provide a migration path towards elimination of high-voltage
3.3V I/O pins.

Out-Of-Band (OOB) messaging between Out-Of-Band Processor in the chipset and
Embedded Controller (EC) or Baseboard Management Controller (BMC) is also
tunneled through the new eSPI interface as in-band messages, thus replacing the
SMBus interface for this purpose.

Run-time flash sharing between chipset and slave devices will be supported over this
new interface. The slave devices would be able to access the corresponding Flash
partition through the Flash Access channel.

Depending on applications, eSPI bus may be active in all the S0-S5 system states. To
lower the system power, the eSPI bus frequency and data pins may be a function of
the system state.

The eSPI specification does not preclude the support of LPC bus behind eSPI and/or
additional eSPI bus behind eSPI although the detail is outside the scope of the current
specification. One of the possible system configurations is as shown below.

Host CPU

LPC
Bridge

Tunneled
SMBus

Tunneled
GPIO

Out Of Band
Processor

Power
Management

Controller

GPIO
Sources

EC/BMC/SIO

SPI Flash
Controller

Flash

Host Chipset

eSPI

eSPI Flash
Access

Chip
Select 0#

Chip
Select n#

eSPI Protocol Block

SPI

Introduction

12 327432-004

Figure 3: Example of LPC bus and Additional eSPI bus behind the eSPI

2.1 Requirements
eSPI is defined to meet the following requirements:

• Low Power: The interface may be active in all S0-S5 system states. The
power consumed when the bus is operating in S3-S5 system states must be
very low to meet the power requirements of these low power system states.
When the interface is not transmitting or receiving, it should consume a
negligible amount of power (at system level).

• Pin Count Reduction: Moving LPC devices over to the eSPI interface
facilitates the removal of LPC pins in the longer term. On top of that
messaging through sideband pins needed for communication between the
chipset and slave devices (such as EC, BMC and SIO) is converted to in-band
messages, resulting in further pin count reduction.

• Medium Bandwidth: The bus bandwidth needs to be higher than that of the
Low Pin Count (LPC) bus.

LPC
Bridge

eSPI Protocol
Master

eSPI Slave

eSPI Bridge
Master

Internal
Devices LPC Bridge

eSPI Slave
Device LPC Device

Host
Chipset

EC/BMC/SIO

eSPI

eSPI LPC

Introduction

327432-004 13

• LPC Replacement: Supports all the capabilities needed to replace the parallel
LPC interface. However, 8237 DMA and Firmware Hub (FWH) are not
supported over this interface.

• Sideband Pins as In-Band Messaging: Facilitates the removal of sideband
pins for communication between chipset and slave devices by converting this
communication into in-band messages sent over the eSPI bus.

• Real Time Flash Sharing: Supports flash sharing based on partition-able
memory mapping. Allows real-time operational access by chipset and slave
devices.

• Chipset and Slave Devices SMBus Replacement: Supports tunneling of all
SMBus communication between chipset and slave devices over the new
interface as in-band messages.

• Scalable bandwidth: Allows the bandwidth to be scaled based on application
needs to optimize power versus performance. This could be done through
frequency scaling or varying the number of active data pins.

• Low Voltage I/O Buffer: eSPI uses the same I/O buffer as Serial Peripheral
Interface (SPI). The I/O buffer will support only 1.8V mode of operation for
the eSPI bus.

§

Architecture Overview

14 327432-004

3 Architecture Overview

3.1 System Topology
The Enhanced Serial Peripheral Interface (eSPI) operates in master/slave mode of
operation where the eSPI master dictates the flow of command and data between
itself and the eSPI slaves by controlling the Chip Select# pins for each of the eSPI
slaves. At any one time, the eSPI master must ensure that only one of the Chip
Select# pins is asserted based on source decode, thus allowing transactions to flow
between the eSPI master and the corresponding eSPI slave associated with the Chip
Select# pin. The eSPI master is the only component that is allowed to drive Chip
Select# when eSPI Reset# is de-asserted.

For an eSPI bus, there is only one eSPI master and one or more eSPI slaves.

In Single Master-Single Slave configuration, a single eSPI master will be connected to
a single eSPI slave. In one configuration, the eSPI slave could be the device that
generates the eSPI Reset#. In this case, the eSPI Reset# is driven from eSPI slave to
eSPI master. In other configuration, the eSPI Reset# could be generated by the eSPI
master and thus, it is driven from eSPI master to eSPI slave.

Figure 4: Single Master-Single Slave with eSPI Reset# from Slave to Master

CLK

I/O [n:0]

CS#

CLK

I/O [n:0]

CS#

Alert#

eSPI Slave

Reset#

Alert#

Reset#

eSPI
Master

Architecture Overview

327432-004 15

Figure 5: Single Master-Single Slave with eSPI Reset# from Master to Slave

CLK

I/O [n:0]

CS#

CLK

I/O [n:0]

CS#

Alert#

Reset#

Alert#

Reset#

eSPI
Master

eSPI Slave

Architecture Overview

16 327432-004

Figure 6: Single Master-Multiple Slaves with Two eSPI Reset#

CLK

I/O [n:0]

CSb

CLK

I/O [n:0]

CSb

CLK

I/O [n:0]

CSb

CLK

I/O [n:0]

CSb

CLK

I/O [n:0]

CS0b

CS1b

CS<n-1>b

CS<n>b

:
:

:
:

Alertb

Alertb

Alert<n-1>b

Alert<n>b

Flash 0
(Non-eSPI

Slave)

Flash 1
(Non-eSPI

Slave)

EC/BMC/SIO
(eSPI Slave)

eSPI Slave

Reset#Reset0#

Reset#Reset1#

eSPI
Master

Architecture Overview

327432-004 17

Multiple SPI and eSPI slaves could be connected to the same eSPI bus interface in a
multi-drop Single Master-Multiple Slaves configuration. The number of devices that
can be supported over a single eSPI bus interface is limited by bus loading and signals
trace length.

In this configuration, the clock and data pins are shared by multiple SPI and eSPI
slaves. Each of the slaves has its dedicated Chip Select# and Alert# pins.

In an eSPI bus configuration with multiple slaves present, the eSPI master may
support 2 eSPI Reset# pins, one from eSPI slave to eSPI master and another one
from eSPI master to eSPI slaves. In this case, the master’s eSPI interface will only be
reset if all the slaves’ eSPI interfaces are reset.

SPI slaves such as Flash and TPM are allowed to share the same set of clock and data
pins with eSPI slaves. These non-eSPI slaves are selected using the dedicated Chip
Select# pins and they communicate with the eSPI master through SPI specific
protocols ran over the eSPI bus.

Architecture Overview

18 327432-004

3.2 Architecture Descriptions
In a Single Master-Single Slave configuration as shown in the diagram below, there
could be multiple eSPI host bridges within a single eSPI master and there could be
multiple eSPI endpoints within a single eSPI slave.

Figure 7: Single Master-Single Slave (Multiple Channels)

Host CPU

eSPI Host
Bridge #2

eSPI Master

eSPI Host
Bridge #3

Addr.
Decode

Addr.
Decode

eSPI Host
Bridge #1

Addr.
Decode

Multiple channels
over eSPI

C
h0

C
h1

C
h2

eSPI
Endpoint #1

eSPI
Endpoint #2

Ch1
Q

Ch2
Q

Ch0
Q

eSPI
Endpoint #3

eSPI Slave

Chip Select0#

Architecture Overview

327432-004 19

When Chip Select# corresponding to the eSPI slave is asserted, command and data
transfer happens between the eSPI master and eSPI slave, which could be a result of
the eSPI host bridge and eSPI endpoint communications.

Each of the eSPI host bridges communicates with its corresponding eSPI endpoint
through dedicated channel.

The use of channels allows multiple independent flows of command and data to be
transferred over the same bus between the eSPI master and eSPI slave with no
ordering requirement.

Resources such as flow control, command and data queues are dedicated for each of
the channels to provide independent command and data flows.

In Single Master-Multiple Slaves configuration shown in the diagram below, multiple
discrete eSPI slaves can be dropped onto the eSPI bus. Each of the eSPI slaves should
have a dedicated Chip Select# pin. On the master side, there are eSPI host bridges
corresponding to each of the discrete slaves respectively, each driving the Chip
Select# pin of the corresponding discrete slave.

At any one time, only one of the Chip Select# pins can be asserted. Command and
data transfer can then happen between the eSPI host bridge and the corresponding
eSPI slave.

Architecture Overview

20 327432-004

Figure 8: Single Master-Multiple Slaves

The next diagram shows one of the ways the specification can be used to support
EC/BMC/SIO communication over the eSPI interface.

Host CPU

eSPI Host
Bridge #2

eSPI Master

eSPI Host
Bridge #3

Addr.
Decode

Addr.
Decode

eSPI Endpoint
#1

eSPI Endpoint
#2

Queue

eSPI Slave 1

eSPI Host
Bridge #1

Addr.
Decode

eSPI Endpoint
#3

Queue

eSPI Slave 2

eSPI Endpoint
#4

Queue

eSPI Slave 3

Chip Select0# Chip Select2#Chip Select1#

Multiple channels
over eSPI

Architecture Overview

327432-004 21

Figure 9: EC/BMC/SIO Communication Over eSPI Channels

In this example, the eSPI host bridge and the corresponding eSPI endpoint
communicate through Channel 0. The Sideband Pins are tunneled as in-band
messages through Channel 1. SMBus OOB messages are tunneled through Channel 2.
Flash access transactions are accomplished through Channel 3. The transactions for
different channels flowing between the eSPI master and EC/BMC/SIO share the same
Chip Select# pin, and the same set of data and clock pins.

C
h0

C
h1

C
h2

C
h 3

Host CPU

eSPI Host
Bridge Tunneled

SMBus
Tunneled

Sideband Pin

Out Of Band
Processor

Power
Management

Controller
GPIO

Host Chipset
(eSPI Master)

Multiple channels
over eSPI

eSPI Flash
Access

Addr.
Decode

eSPI
Endpoint

Virtual Wire
Controller

Tunneled
SMBus Device

Ch2
Q

Ch3
Q

Ch0
Q

Flash Master

EC/BMC/SIO
(eSPI Slave)

OS Discoverable

OS Transparent, Firmware Configuration

OS Transparent

Chip Select0#

Architecture Overview

22 327432-004

3.3 Pin Descriptions
eSPI uses the existing SPI I/O buffer. The electrical specification for this new interface
is the same as SPI.

eSPI Reset# is typically driven from eSPI master to eSPI slaves. The exception is
when eSPI Reset# is generated by eSPI slave, which drives the eSPI Reset# to the
eSPI master. eSPI Reset# is the reset to the eSPI interface on both sides.

eSPI master and eSPI slaves must tri-state the interface pins when their respective
eSPI Reset# is asserted. The Chip Select# and I/O[n:0] pins require weak pull-up to
be enabled on these pins whereas the Serial Clock requires a weak pull-down. When
functions as a driven output, Alert# pin does not require a weak pull-up to be enabled
on the pin unless for the purpose of terminating the pin to inactive when it is not
used. When functions as an open-drain output, Alert# pin requires a weak pull-up to
be enabled on the pin.

The weak pull-up/pull-down should be implemented either as an integral part of the
eSPI master buffer or on the board. eSPI slaves must not implement the weak pull-
up/pull-down. For Alert# pin configured as open-drain, it is recommended that the
weak pull-up be implemented on the board such that its impedance value could be
adjusted accordingly when needed.

Refer to Section 8.1 - Electrical Specification for the value of the weak pull-up/pull-
down resistor.

After eSPI Reset# is deasserted on the eSPI master, the eSPI master begins driving
Chip Select# and Serial Clock pins to their idle state appropriately. The weak pull-up
on the Chip Select# and the weak pull-down on the Serial Clock are allowed to be
disabled after the eSPI Reset# deassertion. However, I/O[n:0] and Alert# pin (open-
drain) continue to have the weak pull-up enabled for the proper operation of the
eSPI bus.

Table 2: eSPI Pin List

Pin Name Direction Clock Description

eSPI
Reset#

Master to
Slave1
or
Slave to
Master2

Asynchronous Reset#: Reset the eSPI interface for
both master and slaves.

Note:
1. eSPI Reset# is typically driven
from eSPI master to eSPI slaves.
2. eSPI Reset# is generated by eSPI
slave, driven from eSPI slave to eSPI
master.

Architecture Overview

327432-004 23

Pin Name Direction Clock Description

Chip
Select#

Master to
Slave

Asynchronous Chip Select#: Driving Chip Select#
low selects a particular eSPI slave for
the transaction.

Each of the eSPI slaves is connected
to a dedicated Chip Select# pin.

Serial
Clock

Master to
Slave

- Clock: This pin provides the reference
timing for all the serial input and
output operations.

I/O [n:0] Bi-directional Serial Clock I/O: These are bi-directional
input/output pins used to transfer data
between master and slaves.
The value of ‘n’ may be 1 or 3
depending on the I/O mode.

In Single I/O mode (n=1), I/O[0] is
the eSPI master output/eSPI slave
input (MOSI) whereas I/O[1] is the
eSPI master input/eSPI slave output
(MISO).

Alert# Slave to
Master

Asynchronous Alert#: This pin is used by eSPI slave
to request service from eSPI master.
Alert# is either a driven, or an open-
drain output from the slave with
default as a driven output.

This pin is optional for Single Master-
Single Slave configuration where
I/O[1] can be used to signal the Alert
event.

§

Bus Protocol

24 327432-004

4 Bus Protocol
The details of the Enhanced Serial Peripheral Interface (eSPI) protocol are described in
this section. The electrical of eSPI bus is similar to SPI bus with deviations specifically
called out in this specification.

The Serial Clock must be low at the assertion edge of the Chip Select# while eSPI
Reset# has been de-asserted. The first data is launched from master while the serial
clock is still low and sampled on the first rising edge of the clock by slave. Subsequent
data is launched on the falling edge of the clock from master and sampled on the
rising edge of the clock by slave. The data is launched from slave on the falling edge
of the clock. The master could implement a more flexible sampling scheme since it
controls the clock.

All transactions on eSPI must be in multiple of 8-bits (one Byte).

4.1 Basic Protocol

Figure 10: Basic eSPI Protocol

COMMAND RESPONSE

CLK

Chip Select#

Data[n:0]

CMD HDR (Optional) DATA (Optional) CRC

RSP HDR (Optional) DATA (Optional) CRCSTS

COMMAND

RESPONSE

Bus Protocol

327432-004 25

eSPI transaction consists of a Command phase driven by master, a Turn-Around (TAR)
phase, and a Response phase driven by the slave. The Command phase consists of a
CMD, an optional header (HDR), optional DATA and a CRC. The Response phase
consists of a RSP, an optional header (HDR), optional data, a Status and a CRC. CRC
generation is mandatory for all eSPI transactions where CRC byte is always
transmitted on the bus. However, CRC checking is default disabled after reset and it is
enabled by SET CONFIGURATION. When CRC checking is disabled, CRC byte is ignored
by the receiver.

A transaction could be initiated by the master through the assertion of Chip Select#,
start the clock and drive the command onto the data bus. The clock remains toggling
until the complete response phase has been received from the slaves.

Figure 11: Slave Triggered Transaction (Single Master-Slave)

A transaction could be initiated by the slave by first signaling an Alert event to the
master. The Alert event could be signaled through two ways. In the Single Master-
Single Slave configuration, the I/O[1] pin could be used by the slave to indicate an
Alert event. In the Single Master-Multiple Slaves configuration, a dedicated Alert# pin
is required.

The Alert event can only be signaled by the slave when the slave’s Chip Select#
is high.

When I/O[1] is used to signal the Alert# event, it is toggled from tri-state to pulled
low by the slave when the slave decides to request for service. The slave then holds
the state of the I/O[1] pin until the Chip Select# is asserted by the master. Once the
Chip Select# is asserted, the eSPI slave must release the ownership of the I/O[1] pin
by tri-stating the pin within the tSLAZ timing and the pin will be pulled high by the weak
pull-up. The master then continues to issue command to figure out the cause of the
Alert event from the device and then service the request. At the last falling edge of
the serial clock after CRC is sent, the eSPI slave must drive I/O[n:0] pins to high until
Chip Select# is deasserted. Besides power friendly due to weak pull-up on these pins,
the driving to high ensures no false Alert# event is generated by I/O[1] when Chip
Select# is deasserted. At the deassertion edge of Chip Select#, these I/O[n:0] pins
are tri-stated by the slave meeting the tSHQZ Output Disable timing where the weak
pull-ups maintain these pins at high, with the master continues to tri-state the
I/O[n:0]. To signal an alert event after Chip Select# deassertion, the slave is only
allowed to re-assert the I/O[1] pin after the tSHAA timing.

COMMAND

CLK

Chip Select#

Data[n:0] ALERT#
(I/O[1]) RESPONSE

Bus Protocol

26 327432-004

When Alert# pin is used to signal the Alert# event, it is toggled by the slave from high
to low (when the pin is a driven output) or tri-state to pulled low (when the pin is an
open-drain output) when the slave decides to request for service. The I/O[n:0] pins
remain tri-stated by the slave. The slave then holds the state of the Alert# pin until
the Chip Select# is asserted by the master. Once the Chip Select# is asserted, the
slave must drive the Alert# pin high (when the pin is a driven output), or release the
ownership of the pin by tri-stating the pin (when the pin is an open-drain output). The
tSLAZ timing is not applicable to the Alert# pin. The master then continues to issue
command to figure out the cause of the Alert event from the device and then service
the request. At the last falling edge of the serial clock after CRC is sent, the eSPI slave
must drive I/O[n:0] pins to high until Chip Select# is deasserted for power friendly
reason due to weak pull-up on these pins. After Chip Select# deassertion, these
I/O[n:0] pins are tri-stated by the slave after meeting the tSHQZ Output Disable timing
where the weak pull-ups maintain these pins at high, with the master continues to tri-
state the I/O[n:0]. The tSHAA timing is not applicable to Alert# pin. However, when
Alert# pin is configured as open-drain and asserted, the weak pull-up on the pin must
be such that the assertion of the CS# for the shortest possible transaction (which
causes the slave to tri-state the Alert# pin), is able to pull the Alert# pin high fast
enough to the deasserted value before or by the last failing edge of the serial clock at
the end of the transaction.

In the case of error condition where Chip Select# is deasserted abruptly by the
master, refer to Section 9.2.1.5 for the detail.

Bus Protocol

327432-004 27

Figure 12: Slave Triggered Transaction (Multiple Slave)

The specification does not prevent the use of a dedicated Alert# pin for the Single
Master-Single Slave configuration.

In the boundary case where the Alert event assertion aligns with Chip Select#
assertion, the slave still tri-state the I/O[1] pin or drive the Alert# pin high (when the
pin is a driven output) or tri-state the Alert# pin (when the pin is an open-drain
output) after sampling the corresponding Chip Select# assertion. The status is
returned during the response phase and the master is then aware of the need to
service the slave’s outstanding requests.

The Alert event signaled on the pin is asynchronous to the Serial Clock.

eSPI slaves must support both types of Alert mechanism. The method to determine
which Alert mechanism to use for each of the eSPI slaves is implementation specific.

eSPI is defined to use packet-based split transaction protocol. On the transmit side,
the packets are formed in the Transaction Layer based on the transaction to be sent.
The Link Layer extends the packet with a CRC byte.

Similarly on the receive side, the CRC is checked at the receiving Link Layer when CRC
checking is enabled. Once the packet passes the CRC check, the packet is sent to
Transaction Layer where it is decoded and acted upon.

COMMAND RESPONSE

CLK

Chip Select#

Data[n:0]

Alert#

COMMAND RESPONSE

CLK

Chip Select#

Data[n:0]

Alert#

Slave tri-state, Alert# pulled high by weak pull-up

Slave drives Alert# high, no weak pull-up needed

(open-drain)

(driven)

Bus Protocol

28 327432-004

4.2 Command Phase
The Command phase is used by the eSPI master to initiate a transaction to the slave
or in response to an Alert event by the slave. It consists of a CMD, an optional header
(HDR), optional DATA and a CRC.

The CMD field consists of Command Opcode.

Figure 13: Command Opcode

The Command Opcode is used to indicate channel specific commands and to
communicate link management events.

Channels specific commands communicated over the bus include Command Put and
Command Get for the respective channels.

Link management events include GET_STATUS, GET_CONFIGURATION and
SET_CONFIGURATION.

The Command Opcode is 8-bits wide.

If the slave receives a packet with an invalid Command Opcode which is not defined
by this specification, the slave must not respond to the transaction. The transaction
will be terminated with the default response (NO_RESPONSE) on the bus.

Table 3: Command Opcode Encodings

CMD Opcode Encoding[7:0] Description

eSPI Peripheral Channel

PUT_PC 00000000 Put a posted or completion header and optional data.

Note: It is illegal to issue a PUT_PC unless the slave
has indicated that it is free to take the Posted or
Completion packet.

Refer to Table 6 for the cycle types and the
respective packet format.

Command Opcode[7:0]

CMD

Bus Protocol

327432-004 29

CMD Opcode Encoding[7:0] Description

PUT_NP 00000010 Put a non-posted header and optional data.

Note: It is illegal to issue a PUT_NP unless the slave
has indicated that it is free to take the Non-Posted
packet.

Refer to Table 6 for the cycle types and the
respective packet format.

GET_PC 00000001 Get a posted or completion header and optional data.

Note: It is illegal to issue a GET_PC unless the slave
has indicated that it has a Posted or Completion
packet available

Refer to Table 6 for the cycle types and the
respective packet format.

GET_NP 00000011 Get a non-posted header and optional data.

Note: It is illegal to issue a GET_NP unless the slave
has indicated that it has a Non-Posted packet
available.

Refer to Table 6 for the cycle types and the
respective packet format.

PUT_IORD_SHORT 010000C1C0
1 Put a short (1, 2 or 4 bytes) non-posted I/O Read

packet.

Note: It is illegal to issue a PUT_IORD_SHORT
unless the slave has indicated that it is free to take
the Non-Posted packet.

Refer to Figure 37 for the packet format.

PUT_IOWR_SHORT 010001C1C0
1 Put a short (1, 2 or 4 bytes) non-posted I/O Write

packet.

Note: It is illegal to issue a PUT_IOWR_SHORT
unless the slave has indicated that it is free to take
the Non-Posted packet.

Refer to Figure 37 for the packet format.

Bus Protocol

30 327432-004

CMD Opcode Encoding[7:0] Description

PUT_MEMRD32_SHORT 010010C1C0
1 Put a short (1, 2 or 4 bytes) non-posted Memory

Read 32 packet.

Note: It is illegal to issue a PUT_MEMRD32_SHORT
unless the slave has indicated that it is free to take
the Non-Posted packet.

Refer to Figure 37 for the packet format.

PUT_MEMWR32_SHORT 010011C1C0
1 Put a short (1, 2 or 4 bytes) posted Memory Write 32

packet.

Note: It is illegal to issue a PUT_MEMWR32_SHORT
unless the slave has indicated that it is free to take
the Posted or Completion packet.

Refer to Figure 37 for the packet format.

Virtual Wire Channel

PUT_VWIRE 00000100 Put a Tunneled virtual wire packet.

Refer to Figure 40 for the packet format.

GET_VWIRE 00000101 Get a Tunneled virtual wire packet.

Refer to Figure 40 for the packet format.

OOB Message Channel

PUT_OOB 00000110 Put an OOB (Tunneled SMBus) message.

Note: It is illegal to issue a PUT_OOB unless the
slave has indicated that it is free to take the OOB
message.

Refer to Table 6 for the cycle types and the
respective packet format.

Bus Protocol

327432-004 31

CMD Opcode Encoding[7:0] Description

GET_OOB 00000111 Get an OOB (Tunneled SMBus) message.

Note: It is illegal to issue a GET_OOB unless the
slave has indicated that it has an OOB message
available to send.

Refer to Table 6 for the cycle types and the
respective packet format.

Flash Access Channel

PUT_FLASH_C 00001000 Put a Flash Access completion.

Used in Master Attached Flash Sharing mode for the
master to return a flash access completion to the
slave.

Note: It is illegal to issue a PUT_FLASH_C unless the
slave has indicated that it is free to take the Flash
Access completion.

Refer to Table 6 for the cycle types and the
respective packet format.

GET_FLASH_NP 00001001 Get a non-posted Flash Access request.

Used in Master Attached Flash Sharing mode for the
slave to issue a flash access request to the master.

It is illegal to issue a GET_FLASH_NP unless the slave
has indicated that it has a non-posted Flash Access
request available to send.

Refer to Table 6 for the cycle types and the
respective packet format.

Channel Independent2

GET_STATUS 00100101 Command initiated by the master to read the status
register of the slave.

SET_CONFIGURATION 00100010 Command to set the capabilities of the slave as part
of the initialization. This is typically done after the
master discovers the capabilities of the slave.

Bus Protocol

32 327432-004

CMD Opcode Encoding[7:0] Description

GET_CONFIGURATION 00100001 Command to discover the capabilities of the slave as
part of the initialization.

RESET 11111111 In-band RESET command.

NOTES:

1. The opcode encoding C1C0 indicates the length of the request. The address
together with the length must not cross the DWord boundary.

Encoding[1:0]

C1C0
Request Length

00 1 byte

01 2 bytes

10 Reserved

11 4 bytes

2. Channel independent commands are enabled by default upon eSPI Reset#
deassertion.

Bus Protocol

327432-004 33

4.3 Turn-Around (TAR)
After the last bit of the Command Phase has been sent out on the data lines, the data
lines enter the Turn-Around window. The eSPI master is required to drive all the data
lines to logic ‘1’ for the first clock of the Turn-Around window and tri-state the data
lines thereafter. The number of clocks for the Turn-Around window is a fixed 2 serial
clocks independent of the eSPI I/O Mode (single, dual or quad I/O). The slave may
insert WAIT_STATE response code after the TAR window for any eSPI transactions
if additional time is needed for the slave to sample the command and prepare
the response.

The eSPI slave must not drive I/O[n:0] until the Response phase in all the eSPI I/O
mode (single, dual, quad I/O). In single I/O mode particularly, the slave must not
drive I/O[1] (MISO) until the Response phase. It must drive the Response phase on
the bus immediately upon the expiry of the Turn-Around time as shown in the
next diagram.

Optionally, the slave is allowed to start turning on its driver on the bus half a clock
earlier at the end of the Turn-Around window (at the rising edge of the second clock)
in preparation for driving the response code at the subsequent clock falling edge as
required by the eSPI protocol.

During the Turn-Around window, the data lines will be pulled high by the weak
pull-up.

Figure 14: Turn-Around Time (TAR = 2 clock)

CLK

Chip Select#

IO[0] C4 C0 CR
4

CR
0

CRCCommand

C5 C1 CR
5

CR
1

C6 C2 CR
6

CR
2

C7 C3 CR
7

CR
3

C4 C0 CR
4

CR
0

CRCResponse

C5 C1 CR
5

CR
1

C6 C2 CR
6

CR
2

C7 C3 CR
7

CR
3

S4 S0 S12 S8

S5 S1 S13 S9

S6 S2 S14 S10

S7 S3 S15 S11

Status

IO[1]

IO[2]

IO[3]

TAR = 2 clocks

Driven to high by master for 1 clock before tri-stating

Bus Protocol

34 327432-004

4.4 Response Phase
The Response phase is driven by the eSPI slave in response to command initiated by
an eSPI master. It consists of a RSP opcode, an optional header (HDR), optional data,
a STATUS and a CRC.

The RSP opcode is an 8-bit field consists of a Response Code and a Response Modifier.

Figure 15: Response Field

4.4.1 Response

The Response Code indicates whether the request is successful, deferred, responded
with error or wait state.

The Response Modifier is a 2-bit field defined for the GET_STATUS with an ACCEPT
response only. For all other responses, it must always have the value of “00” except
for NO_RESPONSE where it is “11”.

The Response Modifier field indicates whether a peripheral (channel 0) completion, a
virtual wire (channel 1) packet or a flash access (channel 3) completion is appended
to the GET_STATUS response phase. The flash access (channel 3) completion is only
applicable when slave attached flash sharing is supported and in operation.

The Response Modifier is by default disabled. It is enabled through
SET_CONFIGURATION by setting the Response Modifier Enable bit to ‘1’ in the General
Capabilities and Configurations register. Refer to Section 7.2.1.3 for the register bit
description.

The Reserved (RSV) field of the RSP opcode must be driven to all 0’s when the slave
drives the response phase. It is reserved for future use by the specification. For the
purpose of backward compatibility, the Reserved (RSV) field must be ignored by the
master.

NO_RESPONSE is the default when the response phase is not driven by any slave. The
eSPI master may terminate the transaction by deasserting Chip Select# at any point
when this is detected.

Response Opcode[7:0]

Response
Modifier RSV Response Code

RSP

7 6 5 4 3 2 1 0Bit

Bus Protocol

327432-004 35

Table 4: Response Field Encodings

RESPONSE Encoding Description

 [7:6] [5:4] [3:0]

ACCEPT R1R0
1 RSV 1000 Command was successfully received

If the command was a PUT_NP, a response of
ACCEPT means that the non-posted transaction
is being completed as a “connected”
transaction.

DEFER 00 RSV 0001 Only valid in response to a PUT_NP. A non-
posted command was successfully received,
and completing the non-posted transaction is
deferred to a future split completion.

NON_FATAL_ERROR 00 RSV 0010 The received command had an error with non-
fatal severity. The error does not affect the
ability to process the received command.

FATAL_ERROR 00 RSV 0011 The received command had a fatal error that
prevented the transaction layer packet from
being successfully processed. Fatal errors
include malformed transactions, Put without
Free, Get without Avail and so forth.

WAIT_STATE 00 RSV 1111 Adds one byte-time of delay when responding
to a transaction on the bus.

NO_RESPONSE 11 11 1111 The response encoding of all 1’s is defined as
no response. It is the default response to the
GET_CONFIGURATION when no slave is present
as a result of the weak pull-up on the data
lines. It is also the default response when fatal
CRC error is detected on the command packet,
or when command opcode is not supported and
the slave must not drive the response phase.

NOTES:

1. The response encoding R1R0 is always “00” except for the GET_STATUS with an
ACCEPT response which has the following definition:

Bus Protocol

36 327432-004

Encoding[7:6]

R1R0
Description

00 No append.

01 A Peripheral (channel 0) completion is appended.

10 A Virtual Wire (channel 1) packet is appended.

11 A Flash Access (channel 3) completion is appended.
This is only applicable when slave attached flash
sharing is supported and in operation.

4.4.2 Status

The 16-bit Status field serves to provide information such as new pending requests
from the slave and queue free information. For status bits related to channels that are
not enabled or if channels are enabled but not ready, or status bits for features that
are not supported, these bits are don’t care and must be ignored by the eSPI master.
The reserved status bits must be driven to ‘0’ by the slave.

The status field reflects the real time status of the slave at the point when the status
field is transmitted on the bus. The AVAIL and FREE reflect the queue status after
taken into account the command being received or sent in this transaction. However,
as the command received is only decoded after the deassertion of CS#, the effect of
the command (such as the SET_CONFIGURATION as an example) to the queue status
if any, will not be reflected in the status field of the current transaction. The change of
the queue status if any, will be signaled by the slave through ALERT# and reflected in
the status field of the subsequent transaction.

The order of the Status bytes transmitted on the eSPI bus is described in Section 6.1.

Refer to Section 5.3 for additional details about setting and clearing of the eSPI Status
register bits.

Figure 16: Slave’s Status Register Definition

01234567891
0

1
1

1
2

1
3

1
4

1
5

PC_FREE: Peripheral Posted/Completion Rx Queue Free
NP_FREE: Peripheral Non-Posted Rx Queue Free

OOB_FREE: OOB Posted Rx Queue Free
PC_AVAIL: Peripheral Posted/Completion Tx Queue Avail
NP_AVAIL: Peripheral Non-Posted Tx Queue Avail

OOB_AVAIL: OOB Posted Tx Queue Avail

FLASH_NP_AVAIL: Flash Non-Posted Tx Queue Avail
FLASH_C_AVAIL: Flash Completion Tx Queue Avail

FLASH_C_FREE: Flash Completion Rx Queue Free (Always ‘1’)
VWIRE_AVAIL: Virtual Wire Tx Queue Avail

RRRR

FLASH_NP_FREE: Flash Non-Posted Rx Queue Free

1

VWIRE_FREE: Virtual Wire Rx Queue Free (Always ‘1’)

1

Bus Protocol

327432-004 37

Table 5: Status Field Encodings

STATUS Bits
Position

Description

Slave’s Rx queues Free

PC_FREE 0 When ‘1’, indicates the slave is free to accept
at least one channel 0 peripheral posted or
completion header and data up to maximum
payload size.

NP_FREE 1 When ‘1’, indicates the slave is free to accept
at least one channel 0 peripheral non-posted
header and 1 DW of Data (if applicable).

VWIRE_FREE 2 This bit must be always a ‘1’. Tunneling of
channel 1 virtual wires is not flow controlled.

OOB_FREE 3 When ‘1’, indicates the slave is free to accept
at least one channel 2 OOB (tunneled
SMBus) message with data up to maximum
payload size.

Slave’s Tx queues Available

PC_AVAIL 4 When ‘1’, indicates the slave has a channel 0
peripheral posted or completion header and
optional data up to maximum payload size
available to send.

NP_AVAIL 5 When ‘1’, indicates the slave has a channel 0
peripheral non-posted header available to
send.

VWIRE_AVAIL 6 When ‘1’, indicates the slave has a channel 1
tunneled virtual wire available to send.

OOB_AVAIL 7 When ‘1’, indicates the slave has a channel 2
OOB (tunneled SMBus) message with data
up to maximum payload size available to
send.

Slave’s Rx queues Free

Bus Protocol

38 327432-004

STATUS Bits
Position

Description

FLASH_C_FREE 8 When ‘1’, indicates the slave is free to accept
at least one channel 3 Flash Access
completion header and data up to maximum
payload size.

This bit must be always a ‘1’. The slave must
be able to accept the completion for the non-
posted request it sends.

This bit is only applicable when master
attached flash sharing is supported and in
operation. Otherwise, the bit is a don’t care.

FLASH_NP_FREE 9 When ‘1’, indicates the slave is free to accept
at least one channel 3 Flash Access non-
posted header and data up to maximum
payload size.

This bit is only applicable when slave
attached flash sharing is supported and in
operation. Otherwise, the bit is a don’t care.

Reserved 11:10 Reserved.

Slave’s Tx queues Available

FLASH_C_AVAIL 12 When ‘1’, indicates the slave has a channel 3
Flash Access completion header and data up
to maximum payload size available to send.

This bit is only applicable when slave
attached flash sharing is supported and in
operation. Otherwise, the bit is a don’t care.

FLASH_NP_AVAIL 13 When ‘1’, indicates the slave has a channel 3
Flash Access non-posted header and data up
to maximum payload size available to send.

This bit is only applicable when master
attached flash sharing is supported and in
operation. Otherwise, the bit is a don’t care.

Bus Protocol

327432-004 39

STATUS Bits
Position

Description

Reserved 15:14 Reserved.

4.5 Alert Phase
Alert phase is signaled by the slave to request for service. In response to an Alert, the
master can issue a GET_STATUS command to the corresponding slave to query for the
cause of the Alert event.

The master then reacts accordingly to service the slave.

A slave could generate an Alert event due to any of the following reasons:

• There is a new request from slave. This could be a Posted, Non-Posted,
deferred Completion, Virtual Wire messages, OOB messages or Flash
Access requests.

• A slave buffer space has become free since the last status update was
returned as not free.

Each of the cause that triggers the Alert event has the corresponding bit in the
STATUS register. When the state of the STATUS register is different from the STATUS
returned during the previous Response phase, the slave will generate a new Alert
event. The difference in the STATUS register indicates a new event has occurred that
requires the service from the master.

Following figures illustrate examples of the flow and the tracking of the slave’s
STATUS register on both sides of the bus.

Bus Protocol

40 327432-004

Figure 17: Flow Diagram for a Slave to Master Peripheral Posted Write

Figure 18: Flow Diagram for a Back-to-back Slave to Master Peripheral Posted Write

Master Slave

Master
copy of
slave

STATUS

Slave
STATUS
register

0x030F

0x031F

Slave has a posted memory
write to issue

0x030F

GET_STATUS

Alert

GET_STATUS Response

0x031F

GET_PC

GET_PC Response 0x030F

Slave
Rx Queues

Slave
Tx Queues

P
C

N
P

O
O
B

F
L
A
S
H

P
C

N
P

O
O
B

F
L
A
S
H

W
I
R
E

W
I
R
E

Master
Tx Queues

Master
Rx Queues

Slave posted write is transferred
from slave Tx to master Rx queue

Slave posted memory write buffer
and PC_AVAIL status is cleared

Slave PC_AVAIL is asserted as there is
a posted memory write to send

0x030F

P
C

N
P

O
O
B

F
L
A
S
H

P
C

N
P

O
O
B

F
L
A
S
H

W
I
R
E

W
I
R
E

Master Slave

Master
copy of
slave

STATUS

Slave
STATUS
register

0x030F

0x031F

Slave has a posted memory write to issue

0x030F

GET_STATUS

Alert

GET_STATUS Response

0x031F

GET_PC

GET_PC Response

Slave
Rx Queues

Slave
Tx Queues

P
C

N
P

O
O
B

F
L
A
S
H

P
C

N
P

O
O
B

F
L
A
S
H

W
I
R
E

W
I
R
E

Master
Tx Queues

Master
Rx Queues

Slave posted write #1 is transferred
from slave Tx to master Rx queue

One posted write #1 has been
sent, but #2 is still available

Slave PC_AVAIL is asserted as there is
a posted memory write to send

0x031F

P
C

N
P

O
O
B

F
L
A
S
H

P
C

N
P

O
O
B

F
L
A
S
H

W
I
R
E

W
I
R
E

0x031F

While waiting to send the first posted
memory write, the slave enqueues a 2nd

posted memory writeStatus indicates posted write is
available

GET_PC

GET_PC Response 0x030F

Slave posted memory write buffer
and PC_AVAIL status are clearedSlave posted write #2 is transferred

from slave Tx to master Rx queue

0x030F

Bus Protocol

327432-004 41

Figure 19: Flow Diagram for a Slave to Master Peripheral Posted Write passes Non-
posted

Master Slave

Master
copy of
slave

STATUS

Slave
STATUS
register

0x030F

0x032F

Slave has a non-posted memory read to
issue

0x030F

GET_STATUS

Alert

GET_STATUS Response

0x032F

GET_PC

GET_PC Response

Slave
Rx Queues

Slave
Tx Queues

P
C

N
P

O
O
B

F
L
A
S
H

P
C

N
P

O
O
B

F
L
A
S
H

W
I
R
E

W
I
R
E

Master
Tx Queues

Master
Rx Queues

Slave NP_AVAIL is asserted as there is
a non-posted memory read to send

0x033F

P
C

N
P

O
O
B

F
L
A
S
H

P
C

N
P

O
O
B

F
L
A
S
H

W
I
R
E

W
I
R
E

While waiting to send the non-posted memory read,
the slave enqueues a posted memory write

Status indicates non-posted packet
is available, but the master cannot

get it because its own Rx non-posted
queue is full

GET_NP

GET_NP Response

0x030F

Slave non-posted and posted memory
write queues and status are cleared

Slave posted posted write is transferred
from slave Tx to master Rx queue

GET_STATUS

Alert

GET_STATUS Response

0x033F

Slave has both posted and non-posted transactions available.
With room in the master posted Rx queue and no room in the non-

posted queue, the master issues a get for the posted transaction
as required by transaction ordering rules. 0x032F

0x032F

Master is able to free up non-posted queue
space and so it issues a get for the non-

posted memory read from the slave

0x032F

0x030F

Posted memory write is transferred, removed from
queue and avail status register

Bus Protocol

42 327432-004

4.6 Get Status Command

Figure 20: GET_STATUS Command

GET_STATUS is a channel independent command which is used to query the content
of the Status register. The state of the Status register will be returned in the
Response phase.

This command is typically used in response to the Alert event from the eSPI slave, to
determine the cause of the Alert event and subsequently service the slave.

The response phase of the GET_STATUS allows a peripheral (channel 0) completion, a
virtual wire (channel 1) packet or a flash access (channel 3) completion to be
appended and sent together with the response. Only one is allowed to be appended to
the GET_STATUS response as indicated by the Response Modifier field. The peripheral
or flash access completion appended may be a partial or full completion corresponding
to a prior non-posted transaction to the slave.

The eSPI master must always be ready to accept the peripheral (channel 0)
completion, the virtual wire (channel 1) packet or the flash access (channel 3)
completion. For the completion, it requires the eSPI master to pre-allocate the
completion buffer appropriately when the non-posted transaction is initiated to
the slave.

Refer to Section 4.4.2 for additional details of the Status register.

CLK

Chip Select#

Data[n:0]

Alert#

GET_STATUS RESPONSECRC CRCSTS

Bus Protocol

327432-004 43

Figure 21: GET_STATUS Command (with Response Modifier)

CLK

Chip Select#

Data[n:0]

Alert#

GET_
STATUS

RESPONSE
(Virtual Wire is

appended)
CRC CRCSTSVW

Count
VW

Data

CLK

Chip Select#

Data[n:0]

Alert#

GET_
STATUS

RESPONSE
(Completion is

appended)
CRC CRCSTSHDR DATA

VW
Index

Bus Protocol

44 327432-004

4.7 Get Configuration and Set Configuration
Command
SET_CONFIGURATION and GET_CONFIGURATION commands are channel independent
commands that are used to access the Channel Capability and Configuration registers
on the eSPI slave side. Only DWord accesses are supported. Since there is no byte
enables, software is required to perform a Read-Modify-Write access if modifying less
than a full DWord.

SET_CONFIGURATION and GET_CONFIGURATION commands can never be deferred
and must be completed within the same cycle.

Figure 22: GET_CONFIGURATION Command

GET_CONFIGURATION command is used to read the Channel Capability and
Configuration registers on the eSPI slaves. The GET_CONFIGURATION command
phase consists of an 8-bit Command Opcode, a 16-bit address and an 8-bit CRC. The
response phase includes an 8-bit Response, 1 DW of Data, a 16-bit Status and an 8-
bit CRC.

Figure 23: SET_CONFIGURATION Command

SET_CONFIGURATION command is used to write the Channel Capability and
Configuration registers on the eSPI slaves. The SET_CONFIGURATION command
phase consists of an 8-bit Command Opcode, a 16-bit address, 1 DW of Data and an
8-bit CRC. The response phase includes an 8-bit Response, a 16-bit Status and an 8-
bit CRC.

eSPI slave must only be configured with capabilities that advertised as supported.
Configuring eSPI slave through SET_CONFIGURATION with unsupported capabilities
will result in undefined behavior which is implementation specific and beyond the
scope of the specification.

CLK

Chip Select#

Data[n:0]
GET

CONFIGURATION RESPONSECRC CRCSTSAddress Data

CLK

Chip Select#

Data[n:0]
SET

CONFIGURATION RESPONSEData CRCSTSAddress CRC

Bus Protocol

327432-004 45

The order of address bytes transmitted on the eSPI bus during GET_CONFIGURATION
and SET_CONFIGURATION is described in Section 6.1.

The eSPI slave contains addressable register space up to 4 KB. The access is
addressed at DWord boundary and only the lower 12-bits of the 16-bit address are
used with address bit[1:0] hard-wired to always “00”. The 4 MSB address bits must be
driven to all zeros by eSPI master. eSPI slaves should ignore the 4 MSB address bits.

Note: Implementation Note: Upon coming out of eSPI Reset#, eSPI master can initiate a
GET_CONFIGURATION cycle to a particular eSPI slave to determine if the eSPI slave
is present. If the eSPI slave is not present, the eSPI data lines remain pulled-up after
the Turn-Around time. eSPI master can use this behavior to deduce that the eSPI
slave is not present on the bus.

If the eSPI slave is present, the eSPI slave must drive the response phase upon the
expiry of the Turn-Around time.

4.8 Non-Posted Transaction
eSPI master initiated non-posted transaction can be terminated as connected or
deferred completion.

The eSPI master initiated non-posted transaction is terminated as a connected
completion when the data and all the information needed to generate the response
are immediately available.

The valid responses for non-posted transactions terminated as connected include
ACCEPT with either a successful or unsuccessful completion, FATAL ERROR and NON-
FATAL ERROR.

Figure 24: Connected Master Initiated Non-Posted Transaction

If the eSPI master initiated non-posted transaction requires data or additional
information which is not available immediately, the non-posted request is terminated
with a “DEFER” response. The deferred completion can be returned some period of
time in the future when the data or information is eventually available. The bus can be
used for other transactions prior to the defer completion being returned, as long as
the ordering rule is maintained.

CLK

Chip Select#

Data[n:0] PUT_NP HDR CRC ACCEPT HDR DATA CRCSTS

Bus Protocol

46 327432-004

When the deferred completion is returned, the only valid response is ACCEPT with
either a successful or unsuccessful completion. For non-posted transaction that will be
terminated with error, the slave is required to respond with FATAL ERROR or NON-
FATAL ERROR as connected without deferring the transaction.

The eSPI slave can complete the non-posted command with multiple split completions
either as connected or deferred. Refer to Section 5.1.3 for cases with split
completions. If one of the split completions has an unsuccessful completion status, the
remaining split completions will not be returned.

Figure 25: Deferred Master Initiated Non-Posted Transaction

eSPI supports short non-posted transactions from master to slave for requests of
length 1, 2 or 4 bytes that have less overhead and are thus more efficient. The unique
opcode indicates the type of non-posted transaction and the request length. The
header contains the address only and the number of address bytes for the transaction

CLK

Chip Select#

Data[n:0] PUT_NP HDR CRC DEFER CRCSTS

CLK

Chip Select#

Data[n:0]

Alert#

GET_STATUS RESPONSECRC CRCSTS

CLK

Chip Select#

Data[n:0] GET_PC CRC ACCEPT HDR DATA CRCSTS

Non-Posted Transaction Terminated With DEFER Response

The Corresponding Completion Comes Back After Some Time, Alerting the eSPI Master

eSPI Master Gets The Completion

1

2

3

Bus Protocol

327432-004 47

is implied by the opcode. The short non-posted transaction does not have the Tag
field. The Tag field is implied as all 0’s which will be returned by the slave in the
completion header.

The short non-posted transactions can be terminated as connected or deferred
completion. However, for optimized performance of short transaction, the slave should
complete the transaction as connected where it can.

Figure 26: Master Initiated Short Non-Posted Transaction

The eSPI slave can generate an Alert when there is a pending non-posted transaction.
In response to that, the eSPI master would issue a GET_STATUS command to check
for the pending request information.

The eSPI master would then generate a GET_NP command to fetch the non-posted
transaction. Once the completion data and the information needed to return the
response is available, the eSPI master would return the split completion back to the
eSPI slave.

Completions to a non-posted request initiated by the eSPI slave are always split.

CLK

Chip Select#

Data[n:0]
PUT_IORD_

SHORT RESPONSECRC CRCSTSHDR
(16-bit addr)

Data
1B,2B,4B

CLK

Chip Select#

Data[n:0]
PUT_IOWR_

SHORT RESPONSEData
1B,2B,4B CRCSTSHDR

(16-bit addr) CRC

PUT_IORD_SHORT1

CLK

Chip Select#

Data[n:0]
PUT_MEMRD32_

SHORT RESPONSECRC CRCSTSHDR
(32-bit addr)

Data
1B,2B,4B

PUT_MEMRD32_SHORT3

PUT_IOWR_SHORT2

Bus Protocol

48 327432-004

Figure 27: Slave Initiated Non-Posted Transaction

CLK

Chip Select#

Data[n:0]

Alert#

GET_STATUS RESPONSECRC CRCSTS

CLK

Chip Select#

Data[n:0] GET_NP CRC ACCEPT HDR CRCSTS

eSPI Slave Alerts the eSPI Master of Pending Request and the eSPI Master Checks the
Request Information

eSPI Master Gets the Non-Posted Request

1

2

CLK

Chip Select#

Data[n:0] PUT_PC HDR DATA CRC ACCEPT CRCSTS

eSPI Master Eventually Returns the Completion3

Bus Protocol

327432-004 49

4.9 Posted Transaction
The valid responses for posted transactions initiated by eSPI master are ACCEPT,
FATAL ERROR and NON-FATAL ERROR. DEFER response for posted transaction
is invalid.

Figure 28: Master Initiated Posted Transaction

eSPI supports short posted transactions from master to slave for requests of length 1,
2 or 4 bytes that have less overhead and are thus more efficient. The unique opcode
indicates the short posted transaction and the request length. The header contains the
address only and the number of address bytes for the transaction is implied by
the opcode.

Figure 29: Master Initiated Short Posted Transaction

The eSPI slave can generate an Alert when there is a pending posted transaction. In
response to that, the eSPI master would issue a GET_STATUS command to check for
the pending request information.

The eSPI master would then generate a GET_PC command to get the
posted transaction.

CLK

Chip Select#

Data[n:0] PUT_PC HDR DATA CRC ACCEPT CRCSTS

CLK

Chip Select#

Data[n:0]
PUT_MEMWR32_

SHORT RESPONSEData
1B,2B,4B

CRCSTSHDR
(32-bit addr) CRC

Bus Protocol

50 327432-004

Figure 30: Slave Initiated Posted Transaction

For illustration, a pipelined back-to-back bus mastering posted write transactions from
eSPI slave with corresponding status indication is as shown below.

CLK

Chip Select#

Data[n:0]

Alert#

GET_STATUS RESPONSECRC CRCSTS

CLK

Chip Select#

Data[n:0] GET_PC CRC ACCEPT HDR CRCSTS

eSPI Slave Alerts the eSPI Master of Pending Request and the eSPI Master Checks the
Request Information

eSPI Master Gets the Posted Request

1

2

DATA

Bus Protocol

327432-004 51

Figure 31: Pipelined Back-to-Back Bus Mastering Posted Write Transactions

4.10 WAIT STATE
All eSPI transactions support WAIT_STATEs by the eSPI slave during the response
phase. After the 2 clocks Turn-Around (TAR) window, the eSPI slave is allowed to
respond with WAIT_STATE Response Code before it terminates the transaction with
ACCEPT, DEFER, NON-FATAL ERROR or FATAL ERROR.

One or more WAIT_STATE Response Code may be inserted by the eSPI slave at the
start of the Response Phase, up to the Maximum WAIT_STATE value configured by the
eSPI master. The eSPI master is not required to check for Maximum WAIT_STATE
violation. It is the eSPI slave’s responsibility to ensure the number of WAIT_STATE
Response Code inserted does not exceed the Maximum WAIT_STATE allowed.

The WAIT_STATE capability provides additional time beyond the Turn-Around (TAR)
window if needed for the slave to sample the command and prepare the response. It

CLK

Chip Select#

Data[n:0] GET_STATUS ACCEPTCRC CRCSTATUSALERT

Status indicates
PC available

CLK

Chip Select#

Data[n:0] GET_PC CRC ACCEPT HDR STSDATA CRC

Status indicates
another PC available

CLK

Chip Select#

Data[n:0] GET_PC CRC ACCEPT HDR STSDATA CRC

Status indicates no
additional PC available

Bus Protocol

52 327432-004

allows the master initiated non-posted transaction which would otherwise be
responded immediately with DEFER, to be completed in the same transaction when
some additional delay is needed by the eSPI slave beyond the Turn-Around (TAR)
window. The additional delay provided by a WAIT_STATE Response Code is one byte
time, which corresponds to 8 serial clocks in the Single I/O mode, 4 serial clocks in
the Dual I/O mode or 2 serial clocks in the Quad I/O mode respectively.

WAIT_STATE Response Code is not included in the CRC calculation. It is defined with
the encoding that has at least 2-bit differences compares to all other response code
encodings. eSPI master is required to handle the wait state at the point WAIT_STATE
Response Code is received.

Figure 32: Master Initiated Non-Posted Transaction Responded with WAIT STATE

§

CLK

Chip Select#

Data[n:0] PUT_NP HDR CRC ACCEPT HDR DATA CRCSTSWAIT-
STATE

WAIT-
STATE

CLK

Chip Select#

Data[n:0] PUT_NP HDR CRC WAIT-
STATE

WAIT-
STATE DEFER CRCSTS

Up to Maximum WAIT-STATE allowed

Up to Maximum WAIT-STATE allowed

Transaction Layer

327432-004 53

5 Transaction Layer

5.1 Cycle Types and Packet Format
The following diagram shows a general Enhanced Serial Peripheral Interface (eSPI)
packet format. The description of the respective fields within the packet is described in
the subsequent sections.

Figure 33: General eSPI Packet Format

7 6 45 3 2 1 0

Address [31:24]

Address [23:16]

Byte 0

Byte 1

Byte 2

Cycle Type

Length[11:8]

Length[7:0]

Tag

Byte 3

Address [15:8]

Address [7:0]

Byte 4

Byte 5

Byte 6

Data Byte 0

Data Byte 1
:
:
:

Data Byte n

Byte 7

Byte n+7

:
:
:

Header

Data

Memory Write 32 Requests

Transaction Layer

54 327432-004

5.1.1 Cycle Types

The summary of cycle types supported over the eSPI interface is shown in the table
below. The Least-Significant-Bit (LSB) of the encodings distinguishes between a cycle
with data and a cycle without data.

The direction of cycle type supported is specified in the table as “Up” or “Down”. “Up”
refers to the direction from eSPI slave to eSPI master and “Down” refers to the
direction from eSPI master to eSPI slave.

Table 6: Cycle Types

Cycle Type Encodings3
[7:0]

Direction Command
Type

Channel
Type

Description

eSPI Peripheral Channel

Memory
Read 32

00000000 Up/Down Non-Posted eSPI
Peripheral
Channel

32-bit addressing Memory
Read Request.
LPC Memory Read and
LPC Bus Master Memory
Read requests are
mapped to this cycle
type.
Refer to Figure 36 for the
packet format.

Memory
Read 64

00000010 Up/Down Non-Posted eSPI
Peripheral
Channel

64-bit addressing Memory
Read Request.
Support of upstream
Memory Read 64 is
mandatory for eSPI
slaves that are bus
mastering capable.
Refer to Figure 36 for the
packet format.

Memory
Write 32

00000001 Up/Down Posted eSPI
Peripheral
Channel

32-bit addressing Memory
Write Request.
LPC Memory Write and
LPC Bus Master Memory
Write requests are
mapped to this cycle
type.
Refer to Figure 34 for the
packet format.

Memory
Write 64

00000011 Up/Down Posted eSPI
Peripheral
Channel

64-bit addressing Memory
Write Request.
Support of upstream
Memory Write 64 is
mandatory for eSPI
slaves that are bus
mastering capable.
Refer to Figure 34 for the
packet format.

Transaction Layer

327432-004 55

Cycle Type Encodings3
[7:0]

Direction Command
Type

Channel
Type

Description

Message 0001r2r1r00 Up/Down Posted eSPI
Peripheral
Channel

Message Request.
Refer to Figure 38 for the
packet format.

Message
with Data

0001r2r1r01 Up/Down Posted eSPI
Peripheral
Channel

Message Request with
data payload.
Refer to Figure 38 for the
packet format.

Successful
Completion
Without
Data

00000110 Up Completion eSPI
Peripheral
Channel

Successful Completion
Without Data.
Corresponds to I/O Write.
Refer to Figure 39 for the
packet format.

Successful
Completion
With Data

00001P1P0
11 Up/Down Completion eSPI

Peripheral
Channel

Successful Completion
With Data.
Corresponds to Memory
Read or I/O Read.
Refer to Figure 39 for the
packet format.

Unsuccessful
Completion
Without
Data

00001P1P0
1,20 Up/Down Completion eSPI

Peripheral
Channel

Unsuccessful Completion
Without Data.
Corresponds to Memory
or I/O.
Refer to Figure 39 for the
packet format.

OOB Message Channel

OOB
(Tunneled
SMBus)
Message

00100001 Up/Down Posted OOB
Message
Channel

SMBus Out-Of-Band
Message. SMBus packet
tunneling.
Refer to Figure 45: OOB
(Tunneled SMBus)
Message Packet Format
for the packet format.

Flash Access Channel4

Flash Read 00000000 Up Non-Posted Flash
Access
Channel

Read from Flash.
Refer to Figure 48 for the
packet format.

Flash Write 00000001 Up Non-Posted Flash
Access
Channel

Write to Flash.
Refer to Figure 48 for the
packet format.

Flash Erase 00000010 Up Non-Posted Flash
Access
Channel

Flash Erase instruction.
Erase part or the whole
partition owned by the
corresponding flash
master.
Refer to Figure 48 for the
packet format.

Transaction Layer

56 327432-004

Cycle Type Encodings3
[7:0]

Direction Command
Type

Channel
Type

Description

Successful
Completion
Without
Data

00000110 Down Completion Flash
Access
Channel

Successful Completion
Without Data.
Corresponds to Flash
Write or Flash Erase.
Refer to Figure 39 for the
packet format.

Successful
Completion
With Data

00001P1P0
11 Down Completion Flash

Access
Channel

Successful Completion
With Data.
Corresponds to Flash
Read.
Refer to Figure 39 for the
packet format.

Unsuccessful
Completion
Without
Data

00001P1P0
1,20 Down Completion Flash

Access
Channel

Unsuccessful Completion
Without Data.
Corresponds to Flash
accesses.
Refer to Figure 39 for the
packet format.

NOTES:

1. The encoding P1P0 has the following definition:

Encoding
P1P0 Description

00 Indicates the middle completion of a split completion sequence.

01 Indicates the first completion of a split completion sequence.

10 Indicates the last completion of a split completion sequence.

11 Indicates the only completion for a split transaction.

2. For Unsuccessful Completion without Data, P1 must be always a ‘1’ as this is
always the last or the only completion.

3. The combination of command opcode and cycle type encoding must be unique.
There is no requirement that cycle type encodings must be unique across
command opcodes.

4. Refer to Section 5.2.4 for detail operation of the Flash Access channel.

5. The message routing field r2r1r0 has the following definition:

Encoding
r2r1r0 Description

000 Local – Terminated at receiver.

001 - 111 Reserved.

Transaction Layer

327432-004 57

5.1.2 Tag

The Tag field is allowed to be non-unique for multiple outstanding non-posted
requests on the same Channel that require completion.

Refer to Section 5.4 - Transaction Ordering Rule for more details about Tag and its
association with the ordering of completions.

The 4-bit Tag field allows up to 16 unique non-posted requests to be outstanding at
any one time which have no ordering requirement among each other. However, the
number of outstanding non-posted requests required to be supported by eSPI master
or slave is implementation specific as it is a function of performance target outside the
scope of the specification.

For posted requests which do not require completion, the usage of Tag field is
implementation specific and beyond the scope of the specification.

5.1.3 Length

The length field indicates the request size or data payload specified in Bytes. The
length field is 1-based. A value of all zeros indicates 4 KB of length.

For memory read and Flash Read, the length field specifies the data payload size
requested.

For memory write, Flash write, OOB message with data and Completion with Data, the
length field specifies the actual amount of data returned in the packet.

For Completion without Data or Un-Successful Completion, the length field must be
driven to zeros by initiator. The receiver must ignore the length field.

For Short I/O and Short Memory, there is no length field defined as the length of the
transaction is embedded in the command opcode itself which supports 1, 2 or 4 bytes
access. Short command does not support 3 bytes access.

For Flash Erase, the least significant 3 bits of the length field specifies the size of the
block to be erased with the encoding matches the value of the Flash Block Erase Size
field of the Channel Capabilities and Configuration register.

For Memory Write, data payload size must not exceed the naturally aligned address
boundary of the corresponding Maximum Payload Size.

For Flash Write and OOB message with data, data payload size must not exceed the
Maximum Payload Size of the respective channel with no address alignment
requirement. The data payload of the OOB message affected by the Maximum Payload
Size is the actual payload of the protocol embedded in the message itself. Refer to
Section 5.2.3 for the OOB message payload.

Transaction Layer

58 327432-004

Read requests size initiated on the eSPI Peripheral Channel must not exceed the
naturally aligned address boundary of the corresponding Maximum Read Request Size
in its Channel Capability and Configuration register. For Flash Access Channel, read
requests size must not exceed the corresponding Maximum Read Request Size with no
address alignment requirement.

Memory read and Flash read requests may be completed with one or multiple split
completions.

A Memory read or Flash read that does not exceed the Maximum Payload Size of the
respective channel must be completed with a single completion.

If the read request size exceeds the Maximum Payload Size of the respective channel,
the completion must be returned in multiple split completions, with each completion
contains up to the Maximum Payload Size. For eSPI Peripheral Channel, each
completion is aligned to the naturally aligned address boundary of the Maximum
Payload Size except for the first completion which aligns to the starting address of the
request. For Flash Access Channel, each completion contains up to Maximum Payload
Size with no address alignment requirement.

For successful completion with data and unsuccessful completion without data, the
additional cycle type encoding indicates whether the completion is the first, middle or
the last completion for a split completion sequence, or whether it is the only
completion that completes the split transaction.

5.1.4 Address

The eSPI peripheral channel memory transactions support both 32 bits and 64 bits
addressing formats. For peripheral channel I/O cycles, only 16-bits address is used.

For addresses below 4 GB, the memory transactions must use the 32 bits addressing
format. When 64 bits addressing format is used, the upper 32 bits address [63:32]
must not be all 0.

Support of upstream 64-bit addressing memory transaction is mandatory for eSPI
slaves that are bus mastering capable. eSPI master must support both upstream
32-bit and 64-bit addressing memory transactions.

For Short Memory and Short I/O transactions, the 1, 2 or 4 bytes accesses must not
cross the Double Word (DW) address boundary.

For other memory transactions, the address may start or end at any byte boundary.
However, the address and payload length combination must not cross the naturally
aligned address boundary of the corresponding Maximum Payload Size. It must not
cross a 4 KB address boundary.

Transaction Layer

327432-004 59

For Flash Access Channel and OOB messages, there is no address alignment
requirement as long as the payload length does not exceed the corresponding
Maximum Payload Size.

5.1.5 Data

The valid data field always starts at Byte 0, regardless of the address alignment.
There is no byte enables associated with data. It is the responsibility of the requester
to break the requests which are targeting non-contiguous locations into
separate requests.

5.2 Channels
A channel provides a means to allow multiple independent flows of traffic to share the
same physical bus.

Each set of the put_*/get_*/*_avail/*_free associates with the command and
response of a corresponding channel.

Each of the channels has its dedicated resources such as queue and flow control.
There is no ordering requirement between traffics from different channels.

The number and types of channels supported by a particular eSPI slave is discovered
through the GET_CONFIGURATION command issued by the eSPI master to the eSPI
slave during initialization.

The assignment of the channel type to the channel number is fixed. The eSPI slave
can only advertise which of the channels are supported.

eSPI Peripheral transactions always use Channel 0. The PUT_PC/ PUT_NP/ GET_PC/
GET_NP/ PC_FREE/ NP_FREE/ PC_AVAIL/ NP_AVAIL commands and status fields are
used for Channel 0 access.

Virtual Wires are communicated through Channel 1. The PUT_VWIRE/ GET_VWIRE/
VWIRE_AVAIL commands and status fields are used for Channel 1 access.

OOB Message and Flash Access use channel 2 and channel 3 respectively.

Commands such as GET_STATUS, SET_CONFIGURATION and GET_CONFIGURATION
are not associated with any particular channel.

5.2.1 Peripheral Channel

eSPI Peripheral channel is used for communication between eSPI host bridge located
on the master side and eSPI endpoints located on the slave side. LPC Host and LPC
Peripherals are an example of eSPI host bridge and eSPI endpoints respectively. Other
examples include ACPI devices connected to the eSPI bus which talk to a host

Transaction Layer

60 327432-004

controller residing on the eSPI master side. The eSPI Peripherals are not software
discoverable.

Peripheral channel is reset when eSPI host bridge is reset by Platform Reset
(PLTRST#). Prior to PLTRST# assertion, eSPI master and slave complete the
HOST_RST_WARN and HOST_RST_ACK Virtual Wires handshake. After sending the
HOST_RST_ACK, eSPI slave must not send any Peripheral channel transaction, nor
any host domain Virtual Wires (i.e. Virtual Wires reset by PLTRST#) such as SMI#,
SCI#, RCIN# or IRQ. Until PLTRST# is deasserted, no transaction shall occur on eSPI
peripheral channel and no host domain Virtual Wires shall be sent from eSPI master or
slave. eSPI peripheral channel is enabled by default after PLTRST# deassertion.

The format of the eSPI Peripheral Memory request packet, I/O request packet,
Message request packet and completions are shown below.

I/O transaction is only supported through the Short I/O command opcodes for request
length of 1, 2 or 4 bytes. 3 bytes I/O transaction is not supported. I/O cycle type is
not defined for the eSPI peripheral channel packet.

The Tag and Channel information are used to match the completions with the
corresponding requests.

Figure 34: Peripheral Memory Write Packet Format

7 6 45 3 2 1 0

Address [31:24]

Address [23:16]

Byte 0

Byte 1

Byte 2

Cycle Type

Length[11:8]

Length[7:0]

Tag

Byte 3

Address [15:8]

Address [7:0]

Byte 4

Byte 5

Byte 6

Data Byte 0

Data Byte 1
:
:
:

Data Byte n

Byte 7

Byte n+7

:
:
:

Header

Data

Memory Write 32 Requests

7 6 45 3 2 1 0

Address [63:56]

Address [55:48]

Byte 0

Byte 1

Byte 2

Cycle Type

Length[11:8]

Length[7:0]

Tag

Byte 3

Address [15:8]

Address [7:0]

Byte 4

Byte 9

Byte 10

Data Byte 0

Data Byte 1
:
:
:

Data Byte n

Byte 11

Byte n+11

:
:
:

Header

Data

Memory Write 64 Requests

Address [47:40]
:
:
:

:
:
:

Transaction Layer

327432-004 61

Figure 35: Short Peripheral Memory or Short I/O Write Packet Format (Master Initiated
only)

Figure 36: Peripheral Memory Read Packet Format

7 6 45 3 2 1 0

Address [15:8]

Address [7:0]

Byte 0

Byte 1

Data Byte 0Byte 2

Header

Data

7 6 45 3 2 1 0
Address [31:24]

Address [23:16]

Byte 0

Address [15:8]

Address [7:0]

Byte 1

Byte 2

Byte 3

Data Byte 0

Data Byte 1
:
:
:

Data Byte n

Byte 4

Byte n+4

:
:
:

Header

Data

Short Memory Write 32 Requests
(n = 0, 1, 3)

Short I/O Write Requests
(n = 0, 1, 3)

Data Byte 1
:
:
:

Data Byte 3Byte n+2

:
:
:

7 6 45 3 2 1 0

Address [31:24]

Address [23:16]

Byte 0

Byte 1

Byte 2

Cycle Type

Length[11:8]

Length[7:0]

Tag

Byte 3

Address [15:8]

Address [7:0]

Byte 4

Byte 5

Byte 6

Header

Memory Read 32 Requests

7 6 45 3 2 1 0

Byte 0

Byte 1

Byte 2

Cycle Type

Length[11:8]

Length[7:0]

Tag

Address [15:8]

Address [7:0]

Byte 9

Byte 10

Header

Memory Read 64 Requests

Address [63:56]

Address [55:48]

Byte 3

Byte 4

Address [47:40]
:
:
:

:
:
:

Transaction Layer

62 327432-004

Figure 37: Short Peripheral Memory or Short I/O Read Packet Format (Master Initiated
only)

Figure 38: Peripheral Message Packet Format

7 6 45 3 2 1 0
Address [31:24]

Address [23:16]

Byte 0

Address [15:8]

Address [7:0]

Byte 1

Byte 2

Byte 3

Header

7 6 45 3 2 1 0
Address [15:8]

Address [7:0]

Byte 0

Byte 1
Header

Short Memory Read 32 Requests
Short I/O Read Requests

7 6 45 3 2 1 0

Message Code [7:0]

Byte 0

Byte n+8

Cycle Type

Length[11:8]

Length[7:0]

TagByte 1

Data Byte 0

Data Byte 1
:
:
:

Data Byte n

:
:
:

Header

Data

Message with Data

7 6 45 3 2 1 0

Message Code [7:0]

Message Specific Byte 0

Byte 0 Cycle Type

Byte 3

Message Specific Byte 1

Byte 4

Byte 5

Header

Message

Message Specific Byte 2

Message Specific Byte 3

Byte 6

Byte 7

Message Specific Byte 0

Message Specific Byte 1

Byte 2

Byte 3

Message Specific Byte 2

Message Specific Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Byte 8

Length[11:8]

Length[7:0]

TagByte 1

Byte 2

Transaction Layer

327432-004 63

Figure 39: Peripheral Memory or I/O Completion With and Without Data Packet Format

Memory Read and Write requests can be initiated by both eSPI master and slave.
Short I/O Read and Write requests, and Short Memory Read and Write requests can
only be initiated by eSPI master.

The eSPI packet format does not contain Byte Enables. In the case where the data to
be written are non-contiguous, the requester is responsible to break the request into
several contiguous sub-requests.

The Message and Message with Data cycle types are posted transactions using
PUT_PC and GET_PC command opcodes. Both Message and Message with Data
packets use the same header format. The Length field specifies the size of the payload
in the Message with Data. The 4 message specific bytes in the message header are
not included in the message Length. For Message cycle type, the Length field is
Reserved and it must be sent with all 0s.

The Message Code in the packet header defines the functionality and usage of the
message.

Table 7: Message Codes

Name Cycle Type Message
Code [7:0]

Routing
r2r1r0

Direction Description

LTR Message 0000_0001 000 Up Latency Tolerance Reporting.

5.2.1.1 Latency Tolerance Reporting (LTR) Message

The Latency Tolerance Reporting (LTR) enables eSPI slaves to report their service
latency requirements for peripheral channel upstream Memory Reads and Writes, so
that power management can be implemented with consideration of eSPI slaves’
service requirements.

7 6 45 3 2 1 0

Byte 0

Byte 1

Byte 2

Cycle Type

Length[11:8]

Length[7:0]

Tag

Byte 3 Data Byte 0

Data Byte 1
:
:
:

Data Byte nByte n+3

:
:
:

Header

Data

7 6 45 3 2 1 0

Byte 0

Byte 1

Byte 2

Length[11:8]

Length[7:0]

Tag Header

Completion With Data

Completion Without Data

Cycle Type

Transaction Layer

64 327432-004

The eSPI master is not required to honor the requested service latencies, but is
strongly encouraged to provide a worst case service latency that does not exceed the
latencies indicated by the LTR mechanism.

All eSPI masters must support LTR message. LTR is mandatory for eSPI slaves that
support bus mastering using peripheral channel upstream memory requests.

Setting the Latency Value field to all 0’s indicates that the eSPI slave will be impacted
by any delay and that the best possible service is requested.

If an eSPI slave has no service requirement, it must have the Requirement bit clear.
When bus mastering is disabled on an eSPI slave, if the slave had previously reported
latency with the Requirement bit set, it must send a new LTR Message with
Requirement bit clear. If an eSPI slave is put into an offline or equivalent of a PCI
non-D0 state, the slave is required to send an LTR message with the Requirement
bit clear.

An eSPI slave that supports LTR must transmit an initial LTR Message before issuing
any upstream memory requests. It is recommended that eSPI slave transmits an LTR
Message shortly after the peripheral channel is enabled.

Whenever the service requirement changes, eSPI slave should transmit an updated
LTR Message.

If the latency tolerance is being reduced, it is recommended to transmit the updated
LTR Message ahead of first anticipated Request with the new requirement, allowing
the amount of time indicated in the previously issued LTR Message. If the tolerance is
being increased, then the update should immediately follow the final Request with the
preceding latency tolerance value.

It is strongly recommended that eSPI slave sends no more than two LTR Messages
within any 500μs time period. eSPI master must not generate an error if more than
two LTR Messages are received within a 500μs time period.

LTR uses Message cycle Type with no data payload.

Transaction Layer

327432-004 65

Figure 40: LTR Message Format

Table 8: LTR Message Field Description

Message Field Description

RQ Requirement (RQ): A ‘0’ indicates that eSPI slave has no service
requirement. When this bit is a ‘1’, the remaining fields are valid to indicate
latency tolerance requirement for the eSPI slave.

LS[2:0] Latency Scale (LS[2:0]): This is the multiplier to the Latency Value
(LV[9:0]) field to yield an absolute time value for the latency tolerance.

LS[2:0] Description

000 Value times 1 ns

001 Value times 32 ns

010 Value times 1,024 ns

011 Value times 32,768 ns

100 Value times 1,048,576 ns

101 Value times 33,554,432 ns

110 - 111 Reserved

LV[9:0] Latency Value (LV[9:0]): Along with the Latency Scale (LS[2:0]) field,
this specifies the service latency that tolerable by the eSPI slave.

7 6 45 3 2 1 0

Message Code = LTR

Byte 0 Cycle Type = Message

Byte 3

Latency Value [7:0]

Byte 4

Byte 5

Header

LTR Message

R
Q

RSV Latency
Scale [2:0]

LV
[9:8]

Reserved

Reserved

Byte 6

Byte 7

0h

00h

TagByte 1

Byte 2

Transaction Layer

66 327432-004

5.2.2 Virtual Wires Channel

The Virtual Wire channel is used to communicate the state of Sideband pins or GPIO
tunneled through eSPI as in-band messages. Serial IRQ interrupts are communicated
through this channel as in-band messages.

The Command phase consists of a Command Opcode, Virtual Wire Packet and a CRC.

The Virtual Wire Packet begins with the Virtual Wire Count as the header byte where
the count indicates the number of Virtual Wire groups communicated by the packet. It
is then followed by one or more Virtual Wire groups. Each of the Virtual Wire group
consists of 2 bytes, namely a Virtual Wire Index and a Virtual Wire Data. Multiple
Virtual Wire groups up to 64 groups are allowed to be sent in the same packet.

The definition of the Virtual Wire Count is as follow:

Bits Description

7:6 Reserved

5:0 Count: The 6-bit count field allows up to 64 Virtual Wire groups to be
communicated in the same packet. This is a 0-based count.

The number of Virtual Wire groups in a single Virtual Wire packet must not exceed the
Operating Maximum Virtual Wire Count configured in the Channel 1 Capability and
Configuration register. This applies to any Virtual Wire packet initiated by eSPI master
or eSPI slave. eSPI slave must advertise the support of 8 or more Virtual Wire groups
being communicated in a single Virtual Wire packet.

The Virtual Wire Index points to one of the many pre-defined groups of Virtual Wires.
The format of the Virtual Wire Data is specific to the corresponding Virtual Wire Index.
It contains information specific to the Virtual Wire group that it is communicating.

The unused virtual wire slots within a particular Virtual Wire Index would be made
Reserved. The initiator must drive the Reserved field to ‘0’ and the receiver must
ignore the Reserved field.

Virtual Wire packets are not subjected to flow control. The receiver must always be
ready to receive the Virtual Wire packets at any time, as long as the channel
is enabled.

The length of the Virtual Wire Packet is (1 + 2*n) bytes where n is the number of
Virtual Wire groups in the packet.

Virtual Wire should be given the highest priority over traffic from other channels to
ensure that the latency is kept to a minimum.

The diagram below shows the Virtual Wire packet format.

Transaction Layer

327432-004 67

Figure 41: Virtual Wire Packet Format

The components on both sides of the bus must track the logical state of the individual
Virtual Wires. When the logical state of the Virtual Wire changes, the new state must
be communicated to the other component connected to the same bus using the
appropriate Virtual Wire messages.

Some of the Virtual Wires such as PME and Interrupt can be shared by multiple eSPI
slaves. The eSPI master must track the logical state of the individual Virtual Wires
independently for each of the eSPI slaves and is responsible to aggregate the different
sets of Virtual Wires.

The messages from eSPI master to slave are unicast only, meaning they can only
target one particular eSPI slave.

When PLTRST# message is received over the link, indicating platform reset, the
individual Virtual Wires reset by Platform Reset should be initialized to the default
value. To avoid behavior ambiguity, it is recommended that Virtual Wires reset by
Platform Reset should not be sent together with PLTRST# Virtual Wire in a single
Virtual Wire packet. In any case, PLTRST# takes priority and these Virtual Wires are
reset regardless of their level sent in the packet.

When virtual wires change state due to reset (either going into reset or exiting reset),
a new message will not be sent to notify the other component of the state change as
both sides would be looking at the same reset.

If an un-supported Virtual Wire message is received, the receiver should drop the
message silently.

PUT_
VWIRE

Virtual Wire
Count

Virtual
Wire Index CRC

RSP CRCSTS

COMMAND

RESPONSE

Virtual Wire Index

Virtual Wire Data
(Index specific)

Virtual Wire
Data

GET_
VWIRE CRC

RSP CRCSTS

COMMAND

RESPONSE

Virtual Wire
Count

Virtual
Wire Index

Virtual Wire
Data

Slave Initiated Virtual Wire Transfer

Data
(Virtual Wire group)

Virtual Wire Packet

Virtual Wire Count

Virtual Wire Index

Virtual Wire Data
(Index specific)

Header

Virtual
Wire Index

Virtual Wire
Data

Virtual
Wire Index

Virtual Wire
Data

Master Initiated Virtual Wire Transfer

Data
(Virtual Wire group)

Transaction Layer

68 327432-004

The Virtual Wires tunneled through eSPI will only take effect at the receiver when the
Chip Select# is deasserted at the end of the transaction. The initiator can only assume
the Virtual Wires are sent at the deassertion edge of the Chip Select# for the purpose
of synchronizing the physical pin state change with the Virtual Wires communicated.

Figure 42: Virtual Wires at the Receiver

5.2.2.1 Virtual Wire Index

The following table defines the Virtual Wire Index, the corresponding pre-defined
Virtual Wire groups and the associated Virtual Wire Data formats.

CLK

Chip Select#

Data[n:0] RSP CRCSTSPUT_
VWIRE

VW
Count
0x01

VW
Index

(a)

VW
Data

VW
Index

(b)

VW
Data CRC RSP CRCSTSPUT_

VWIRE

VW
Count
0x01

VW
Index

(C)

VW
Data

VW
Index

(a)

VW
Data CRC

Virtual Wire[x, y, z] represented by Signal[x, y, z] at the Receiver (Slave)

Signal [x]

Signal [y]

Signal [z]

CLK

Chip Select#

Data[n:0] RSP CRCSTSGET_
VWIRE

VW
Count
0x01

VW
Index

(d)

VW
Data

VW
Index

(e)

VW
DataCRC RSP CRCSTSGET_

VWIRE

VW
Count
0x01

VW
Index

(f)

VW
Data

VW
Index

(d)

VW
DataCRC

Virtual Wire[p, q, r] represented by Signal[p, q, r] at the Receiver (Master)

Signal [p]

Signal [q]

Signal [r]

VW[x]_VALID = ’1'
VW[x] = ‘1’

VW[y]_VALID = ’1'
VW[y] = ‘1’

VW[z]_VALID = ’1'
VW[z] = ‘1’ VW[x]_VALID = ’1'

VW[x] = ‘0’

VW[p]_VALID = ’1'
VW[p] = ‘1’

VW[q]_VALID = ’1'
VW[q] = ‘1’

VW[r]_VALID = ’1'
VW[r] = ‘1’

VW[p]_VALID = ’1'
VW[p] = ‘0’

Transaction Layer

327432-004 69

Table 9: Virtual Wire Index Definition

Virtual Wire Index
Virtual Wire Group Virtual Wire Data Format

Start End

0 1 Interrupt event

7 6 5 4 3 2 1 0

L IRQ Line

Bit Description

7 Interrupt Level:

0b: Low

1b: High

6:0 Interrupt Line: Specify the
interrupt (IRQ) line to be sent to the
interrupt controller.

Index=0h: IRQ 0 – 127

Index=1h: IRQ 128 – 255

Interrupt event virtual wires are defined from
slave to master only.
Interrupt level high (‘1’) indicates interrupt
assertion. Interrupt events virtual wires are
active high.

Transaction Layer

70 327432-004

Virtual Wire Index
Virtual Wire Group Virtual Wire Data Format

Start End

2 7 System Event

7 6 5 4 3 2 1 0

Valid Level

Bit Description

7:4 Valid: This field indicates the validity
of the 1-to-1 corresponding Level bits.

0b: Not valid

1b: Valid

This bit functions as a “Mask” bit.
When ‘0’, the corresponding virtual
wire must retain its previous value and
it must not be updated for this virtual
wire packet.

3:0 Level: Each of the bits in this field
indicates the state of a virtual wire
signal to be communicated.

0b: Low

1b: High

Note: The Valid field is to handle the case
where the Virtual Wire may be located in a
shallower power well compared to another
Virtual Wire in the same group and may not be
valid at the time the Virtual Wire message is
sent.

8 63 Reserved Reserved

64 127 Platform specific Platform specific

Transaction Layer

327432-004 71

Virtual Wire Index
Virtual Wire Group Virtual Wire Data Format

Start End

128 255 General Purpose I/O
Expander

7 6 5 4 3 2 1 0

Valid Level

Bit Description

7:4 Valid: This field indicates the validity
of the 1-to-1 corresponding Level bits.

0b: Not valid

1b: Valid

This bit functions as a “Mask” bit.
When ‘0’, the corresponding virtual
wire must retain its previous value and
it must not be updated for this virtual
wire packet.

3:0 Level: Each of the bits in this field
indicates the state of a virtual GPIO to
be communicated.

0b: Low

1b: High

Note: The Valid field is to handle the case
where the Virtual Wire may be located in a
shallower power well compared to another
Virtual Wire in the same group and may not be
valid at the time the Virtual Wire message is
sent.

5.2.2.2 System Event Virtual Wires

The eSPI specification defines the following system event Virtual Wires covering the
platform independent standard sideband signals.

Unless being specifically called out, all system events (Virtual Wire Index 2 to 7) are
level by default. These include ERROR FATAL and ERROR NON-FATAL virtual wires
which are level-triggered. Any state change on a system event results in the new state
being communicated with the corresponding Level (‘0’ or ‘1’). The default reset state
for the respective virtual wires is as described in the virtual wire table below.

If supported, these standard virtual wires must be implemented in accordance to the
specification to enable inter-operability and compatibility. However, the support of
these Virtual Wires is platform specific.

Transaction Layer

72 327432-004

Platform specific Virtual Wires are allowed by the specification with Virtual Wire Index
64 to 127. They are defined in the respective platform specific documents and outside
the scope of the specification.

Table 10: System Event Virtual Wires for Index=2

Virtual Wire Index 2

Virtual Wire Group System Event

Reset eSPI Reset# 1

Direction Master to Slave

Notes:
1. Depending on the usage, the state of these virtual wires may need to be retained in

deeper power well such that they are not reset by eSPI Reset#.

Bit Virtual Wire Description

7

Reserved

6

SLP_S5# Valid: This bit indicates the validity of SLP_S5# virtual
wire on bit[2].
‘0’ – Not valid
‘1’ – Valid

5

SLP_S4# Valid: This bit indicates the validity of SLP_S4# virtual
wire on bit[1].
‘0’ – Not valid
‘1’ – Valid

4

SLP_S3# Valid: This bit indicates the validity of SLP_S3# virtual
wire on bit[0].
‘0’ – Not valid
‘1’ – Valid

3 RSV Reserved

2 SLP_S5#

S5 Sleep Control: Sent when the power to non-critical systems
should be shut off in S5 (Soft Off).

Polarity: Active low.
Reset: Active.

1 SLP_S4#

S4 Sleep Control: Sent when the power to non-critical systems
should be shut off in S4 (Suspend to Disk).

Polarity: Active low.
Reset: Active.

Transaction Layer

327432-004 73

Bit Virtual Wire Description

0 SLP_S3#

S3 Sleep Control: Sent when the power to non-critical systems
should be shut off in S3 (Suspend to RAM).

Polarity: Active low.
Reset: Active.

Table 11: System Event Virtual Wires for Index=3

Virtual Wire Index 3

Virtual Wire Group System Event

Reset eSPI Reset#

Direction Master to Slave

Bit Virtual Wire Description

7

Reserved

6

OOB_RST_WARN Valid: This bit indicates the validity of
OOB_RST_WARN virtual wire on bit[2].
‘0’ – Not valid
‘1’ – Valid

5

PLTRST# Valid: This bit indicates the validity of PLTRST# virtual
wire on bit[1].
‘0’ – Not valid
‘1’ – Valid

4

SUS_STAT# Valid: This bit indicates the validity of SUS_STAT#
virtual wire on bit[0].
‘0’ – Not valid
‘1’ – Valid

3 RSV Reserved

2 OOB_RST_WARN

OOB Reset Warn: Sent by master just before the OOB processor is
about to enter reset. Upon receiving, the EC or BMC must flush and
quiesce its OOB Channel upstream request queues and assert
OOB_RST_ACK VWire upon completing all the outstanding
transactions. The master subsequently completes any outstanding
posted transactions or completions and then disables the OOB
Channel via a write to the slave's Configuration Register.

Polarity: Active high.
Reset: Inactive.

Transaction Layer

74 327432-004

Bit Virtual Wire Description

1 PLTRST#

Platform Reset: Command to indicate Platform Reset assertion and
de-assertion.

Polarity: Active low.
Reset: Active.

0 SUS_STAT#

Suspend Status: Sent when the system will be entering a low
power state soon.

Polarity: Active low.
Reset: Active.

Table 12: System Event Virtual Wires for Index=4

Virtual Wire Index 4

Virtual Wire Group System Event

Reset eSPI Reset#

Direction Slave to Master

Bit Virtual Wire Description

7

PME# Valid: This bit indicates the validity of PME# virtual wire on
bit[3].
‘0’ – Not valid

‘1’ – Valid

6

WAKE# Valid: This bit indicates the validity of WAKE# virtual wire
on bit[2].
‘0’ – Not valid
‘1’ – Valid

5 Reserved

4

OOB_RST_ACK Valid: This bit indicates the validity of
OOB_RST_ACK virtual wire on bit[0].
‘0’ – Not valid
‘1’ – Valid

3 PME#

PCI Power Management Event: eSPI slaves generated PCI PME#
event. Used by the slave to wake the host from Sx through PCI
defined PME#.
If the event occurs while system is in S0, a SCI is generated instead.
Shared by multiple PCI devices on the platform.

Polarity: Active low.

Reset: Inactive.

Transaction Layer

327432-004 75

Bit Virtual Wire Description

2 WAKE#

Wake#: Used by the slave to wake the Host from Sx on any event;
also general purpose event to wake on LID switch or AC insertion,
etc. It is used to generate an eSPI device specific non-PME# wake.
If the event occurs while system is in S0, a SCI is generated instead.
Shared by multiple eSPI endpoints.
Note: The eSPI WAKE# virtual wire is not equivalent to the PCIe
WAKE# pin and it does not function as the PCIe WAKE#.

Polarity: Active low.

Reset: Inactive.

1 RSV Reserved

0 OOB_RST_ACK

OOB Reset Acknowledge: Sent by slave in response to
OOB_RST_WARN virtual wire. Refer to the description of
OOB_RST_WARN for details.

Polarity: Active high.

Reset: Inactive.

Table 13: System Event Virtual Wires for Index=5

Virtual Wire Index 5

Virtual Wire Group System Event

Reset eSPI Reset#

Direction Slave to Master

Bit Virtual Wire Description

7

SLAVE_BOOT_LOAD_STATUS Valid: This bit indicates the validity
of SLAVE_BOOT_LOAD_STATUS virtual wire on bit[3].
‘0’ – Not valid
‘1’ – Valid

6

ERROR_NONFATAL Valid: This bit indicates the validity of
ERROR_NONFATAL virtual wire on bit[2].
‘0’ – Not valid
‘1’ – Valid

5

ERROR_FATAL Valid: This bit indicates the validity of ERROR_FATAL
virtual wire on bit[1].
‘0’ – Not valid
‘1’ – Valid

Transaction Layer

76 327432-004

Bit Virtual Wire Description

4

SLAVE_BOOT_LOAD_DONE Valid: This bit indicates the validity of
SLAVE_BOOT_LOAD_DONE virtual wire on bit[0].
‘0’ – Not valid
‘1’ – Valid

3 SLAVE_BOOT_LOAD_
STATUS

Slave Boot Load Status: Sent by EC or BMC upon completion of
Slave Boot Load from the master attached flash.
‘0’ – The boot image is corrupted, incomplete or otherwise unusable.
‘1’ – The boot code load was successful and that the integrity of the
image is intact, or the boot code load from master attached flash is
not required.
Note: The Slave_Boot_Load_Status must be sent in either the same
or a previous virtual wire message as the Slave_Boot_Load_Done.
Polarity: As defined above.
Reset: ‘0’.

2 ERROR_NONFATAL

Error Non-Fatal: Sent by slave when a non-fatal error is detected.
Note: Refer to Section 9.2 for the error conditions that Non-Fatal
Error virtual wire is signaled.
Polarity: Active high.
Reset: Inactive.

1 ERROR_FATAL

Error Fatal: Sent by slave when a fatal error is detected.
Note: Refer to Section 9.2 for the error conditions that Fatal Error
virtual wire is signaled.
Polarity: Active high.
Reset: Inactive.

0 SLAVE_BOOT_LOAD_
DONE

Slave Boot Load Done: Sent when EC or BMC has completed its
boot process as indication to eSPI master to continue with the G3 to
S0 exit. eSPI master waits for the assertion of this virtual wire before
proceeding with the SLP_S5# deassertion.
Polarity: Active high.
Reset: Inactive.

Table 14: System Event Virtual Wires for Index=6

Virtual Wire Index 6

Virtual Wire Group System Event

Reset PLTRST#

Direction Slave to Master

Transaction Layer

327432-004 77

Bit Virtual Wire Description

7

HOST_RST_ACK Valid: This bit indicates the validity of
HOST_RST_ACK virtual wire on bit[3].
‘0’ – Not valid
‘1’ – Valid

6

RCIN# Valid: This bit indicates the validity of RCIN# virtual wire on
bit[2].
‘0’ – Not valid
‘1’ – Valid

5

SMI# Valid: This bit indicates the validity of SMI# virtual wire on
bit[1].
‘0’ – Not valid
‘1’ – Valid

4

SCI# Valid: This bit indicates the validity of SCI# virtual wire on
bit[0].
‘0’ – Not valid
‘1’ – Valid

3 HOST_RST_ACK

Host Reset Acknowledge: Sent by slave in response to
HOST_RST_WARN virtual wire. Refer to the description of
HOST_RST_WARN for details.

Polarity: Active high.
Reset: Inactive.

2 RCIN#

Reset CPU INIT#: Sent to request CPU reset on behalf of the
keyboard controller.

Polarity: Active low.
Reset: Inactive.

1 SMI#

System Management Interrupt (SMI): Sent as general purpose
alert resulting in SMI code being invoked by the BIOS.

Polarity: Active low.
Reset: Inactive.

0 SCI#

System Controller Interrupt (SCI): Sent as general purpose alert
resulting in ACPI method being invoked by the OS.

Polarity: Active low.
Reset: Inactive.

Transaction Layer

78 327432-004

Table 15: System Event Virtual Wires for Index=7

Virtual Wire Index 7

Virtual Wire Group System Event

Reset PLTRST#

Direction Master to Slave

Bit Virtual Wire Description

7

Reserved

6

NMIOUT# Valid: This bit indicates the validity of NMIOUT# virtual
wire on bit[2].
‘0’ – Not valid
‘1’ – Valid

5

SMIOUT# Valid: This bit indicates the validity of SMIOUT# virtual
wire on bit[1].
‘0’ – Not valid
‘1’ – Valid

4

HOST_RST_WARN Valid: This bit indicates the validity of
HOST_RST_WARN virtual wire on bit[0].
‘0’ – Not valid
‘1’ – Valid

3 RSV Reserved

2 NMIOUT#

NMI Output: Sent by master as indication that NMI# event occurs.
The ‘0’ and ‘1’ on this virtual wire correspond to the assertion and
deassertion of the NMI# to CPU respectively.
Note: This virtual wire is typically only used in server platforms.

Polarity: Active low.

Reset: Inactive.

1 SMIOUT#

SMI Output: Sent by master as indication that SMI# event occurs.
The ‘0’ and ‘1’ on this virtual wire correspond to the assertion and
deassertion of the SMI# to CPU respectively.
Note: This virtual wire is typically only used in server platforms.

Polarity: Active low.

Reset: Inactive.

Transaction Layer

327432-004 79

Bit Virtual Wire Description

0 HOST_RST_WARN

Host Reset Warn: Sent by master just before the Host is about to
enter reset. Upon receiving, the EC or BMC must flush and quiesce its
upstream Peripheral Channel request queues and assert
HOST_RST_ACK VWire upon completing all the outstanding
transactions. The master subsequently completes any outstanding
posted transactions or completions and then disables the Peripheral
Channel via a write to the slave's Configuration Register.

Polarity: Active high.
Reset: Inactive.

5.2.2.3 Communicating Timing Event on Virtual Wires

Some of the events communicated through the Virtual Wire Channel could be
timing events.

For example, the assertion of a particular pin could indicate one event. The prolonged
assertion of the same pin for a certain period of time could indicate a different event.

One solution is to send two different messages, for each of the events; one message
is sent when the pin asserts and another message is sent when the pin has been
asserted for a certain period of time.

This method requires the source of the message to implement a timer that times the
duration of the pin assertion, which upon time-out, results in a different message
being sent.

Multiple Virtual Wires communicated in the same packet will change state at the
receiver the same time at the deassertion edge of the Chip Select#. If the sequence of
the Virtual Wires is required to be communicated, the Virtual Wire that happens later
must be communicated in the next Chip Select# assertion to signify the sequence.

Figure 43: Virtual Wires with Sequence Communicated

CLK

Chip Select#

Data[n:0] RSP CRCSTSPUT_
VWIRE

VW
Count
0x00

VW
Index

(a)

VW
Data CRC RSP CRCSTSPUT_

VWIRE

VW
Count
0x00

VW
Index

(b)

VW
Data CRC

VW[x]_VALID = ’1'
VW[x] = ‘1’

VW[y]_VALID = ’1'
VW[y] = ‘1’

Signal [x]

Signal [y]

Virtual Wire[x, y] represented by Signal[x, y] at the Receiver, with the sequence Signal [x] occurs followed by Signal [y]

Transaction Layer

80 327432-004

5.2.2.4 Interrupt Event

Interrupt event is supported from eSPI slave to master through the virtual wire
channel. Virtual Wire Index 0 and 1 are defined for communicating interrupt events
and up to 256 IRQ lines can be communicated in-band over the eSPI bus.

Interrupt level high (‘1’) indicates interrupt assertion whereas interrupt level low (‘0’)
indicates interrupt deassertion. Interrupt events virtual wires are active high.

For simplicity, eSPI interrupt event virtual wires are default deasserted (level low)
thus eliminating the legacy SERIRQ behavior where SERIRQ line is default pulled high
(‘1’) even though there is no interrupt expected to be generated.

Table 16: Interrupt Event (IRQ) Virtual Wire Generation

IRQ Source
(In Slave) Source Level

IRQ Enable
(0=Disable, 1=Enable)

Slave to Master IRQ Virtual Wire
(Active High)

Active High

0 0 Default. No IRQ VW sent

0
0 -> 1

1 -> 0
No IRQ VW sent

0 -> 1 1 Assertion. IRQ VW (Level=’1’) sent

1 -> 0 1 Deassertion. IRQ VW (Level=’0’) sent

1 0 -> 1 Assertion. IRQ VW (Level=’1’) sent

1 1 -> 0 Deassertion. IRQ VW (Level=’0’) sent

0 -> 1

1 -> 0
0 No IRQ VW sent

Active Low

1 0 Default. No IRQ VW sent

1
0 -> 1

1 -> 0
No IRQ VW sent

0 -> 1 1 Deassertion. IRQ VW (Level=’0’) sent

1 -> 0 1 Assertion. IRQ VW (Level=’1’) sent

0 0 -> 1 Assertion. IRQ VW (Level=’1’) sent

0 1 -> 0 Deassertion. IRQ VW (Level=’0’) sent

0 -> 1

1 -> 0
0 No IRQ VW sent

Both level-triggered and edge-triggered interrupt are supported.

For level-triggered interrupt, the level of the interrupt line is communicated thru the
virtual wire whenever there is a change to the state of the interrupt line from ‘0’ to ‘1’

Transaction Layer

327432-004 81

or vice versa. The interrupt line allocated must be configured to the slave during
initialization. Multiple interrupt sources on the slave are allowed to be shared on a
single level-triggered interrupt line. The shared interrupt line will not change state
until all the pending interrupts are serviced which will then trigger an interrupt event
virtual wire being sent by the slave. The exact method of interrupt line allocation and
interrupt sharing is platform specific and outside the scope of the specification.

To avoid spurious interrupts when using level-triggered interrupts, it is recommended
that the software driver and the eSPI slave implement the following behavior: When
the driver has completed the interrupt service routine, it should issue a posted
memory write to the eSPI slave device to clear the interrupt. Then, the driver should
issue a memory read to the same interrupt clear register. At the eSPI slave, the
interrupt event virtual wire should be sent as cleared, between the posted memory
write that cleared the interrupt, and returning the subsequent memory read
completion.

The interrupt event virtual wire defines a mechanism of sending edge-triggered
interrupt. An edge event interrupt is communicated in the same Virtual Wire packet by
first indicating the new value of the interrupt line, and subsequently the next value
that the interrupt line toggles. This may be interleaved by any other Virtual Wire
groups within the same packet. The mechanism consumes two of the Virtual Wire
count.

Each of the virtual wire including interrupt event virtual wire must not have more than
2 transitions being communicated within a Virtual Wire packet, otherwise the
corresponding virtual wire behavior is undefined. The initiator must make sure this is
not violated. It is optional for the receiver to check for this violation. The 2 transitions
may be a ‘0’-to-‘1’-to-‘0’ or ‘1’-to-‘0’-to-‘1’ transition. The receiver must track the
state of the interrupt event virtual wire while it is being received and translate it to an
interrupt event pulse taking effect at the deassertion edge of the Chip Select#. The
pulse width required is receiver specific such that the edge event interrupt can be
recognized correctly by its internal logic. Edge-triggered interrupts must not be shared
on an interrupt line.

It is possible for eSPI slave to communicate edge-triggered interrupt using two
separate Virtual Wire packets, i.e. interrupt assertion in one Virtual Wire packet
followed by interrupt deassertion in a subsequent Virtual Wire packet. However, it is
the responsibility of the slave to ensure that interrupt assertion edge is always
communicated without being lost, such as in the boundary where the next interrupt
event happens before the prior interrupt deassertion virtual wire is able to be
sent out.

As interrupt event virtual wire is communicated through an independent channel from
the peripheral accesses, data may not be guaranteed to be in the main memory
before interrupt is delivered to the CPU. This can lead to data consistency problem
with the Producer-Consumer model. Software must perform a read to any register in

Transaction Layer

82 327432-004

the slave such that the slave’s posted write buffers are flushed before accessing data
written by the slave to the main memory.

Figure 44: Edge-triggered Interrupt through Virtual Wire

5.2.2.5 General-Purpose I/O Expander

The specification allows the eSPI master to claim the General-Purpose I/O (GPIO) pins
physically resided on the eSPI slave side as part of its own virtual I/O pins.

If the Virtual GPIO is configured as an output pin, the eSPI master tunnels the state of
the Virtual GPIO pin through in-band messaging and the eSPI slave, upon receiving
the message, reflects the state on the GPIO pin physically located on the slave side.

If the Virtual GPIO is configured as an input pin, the eSPI slave samples the state of
the physical GPIO pin and then tunnels the state of the GPIO pin through in-band
messaging on any pin state transition.

All the GPIO pins sharing the same index number must be configured to the same
direction. They can either be configured as all inputs or all outputs, but not a
combination of inputs and outputs.

Similarly, a group of Virtual GPIOs sharing the same index will share the same reset.
The reset is programmable to be reset by either eSPI Reset# or Platform Reset.

The GPIO software interface on the eSPI master and eSPI slave is implementation
specific. The software is responsible to set up the configuration for the GPIO pins on
both sides appropriately and in the consistent manner. The detail of the GPIO
Configuration Registers is implementation specific.

The mapping of the Virtual GPIO pin to the physical GPIO pin on the eSPI slave side is
implementation specific and outside the scope of the specification.

CLK

Chip Select#

Data[n:0] RSP CRCSTSGET_
VWIRE

VW
Count
0x01

VW
Index
0 or 1

VW
Data

VW
Index
0 or 1

VW
DataCRC

IRQ Line = ‘X’
 Level = ‘1’

IRQ Line = ’X'
Level = ‘0’

Edge-triggered interrupt represented by Interrupt [X] signal at the Receiver

Interrupt [X]

Pulse width is receiver
specific such that the

edge event can be
recognized correctly

Transaction Layer

327432-004 83

5.2.3 OOB (Tunneled SMBus) Message Channel

The SMBus packets can be tunneled through eSPI as Out-Of-Band (OOB) messages.
The whole SMBus packet is embedded inside the eSPI OOB message as data.

Only SMBus block writes are tunneled through the eSPI OOB message. These include
the SMBus Management Component Transport Protocol (MCTP) packets which are
based on the SMBus block write protocol.

The SMBus Slave Address, SMBus Command Opcode, SMBus Byte Count, SMBus Data
fields and the optional PEC byte are sent as data within the eSPI OOB message
packet.

The SMBus Byte Count field does not include the PEC byte. It comprehends the actual
payload of the SMBus block write packet itself excluding the 3 SMBus header bytes.

The Length field of the OOB message comprehends the count by the SMBus Byte
Count field, in addition to the 3 header bytes (i.e. SMBus Slave Address, SMBus
Command Opcode and SMBus Byte Count) and an optional PEC byte.

The presence of SMBus PEC is determined through a simple arithmetic operation
between the eSPI OOB header length field and the SMBus Byte Count.

The Maximum Payload Size (MPS) for OOB Message channel applies to the actual
payload of the protocol embedded in the packet that tunneled through the channel,
such as but not limited to the MCTP and the generic SMBus block writes.

Figure 45: OOB (Tunneled SMBus) Message Packet Format

7 6 45 3 2 1 0

Byte 0

Byte 1

Byte 2

Cycle Type

Length[11:8]

Length[7:0]

Tag

Byte 3

Byte 4
SMBus Packet Format

Byte N

:
:
:

Header

Data

7 6 45 3 2 1 0

SMBus Slave Address

SMBus Command Opcode

Byte 0

Byte 1

Byte 2

Cycle Type

Length[11:8]

Length[7:0]

Tag

Byte 3

Byte 4

SMBus Data Byte 0
:
:
:

SMBus Data Byte nByte n+6

:
:
:
:

Header

Data

0

Byte 5

Byte n+7

SMBus Byte Count

PEC

Transaction Layer

84 327432-004

MCTP over SMBus is a specific form of the SMBus block write packet with the SMBus
Command Opcode of 0Fh (i.e. MCTP). The MCTP header and MCTP payload are
embedded as the SMBus block write data bytes. For eSPI OOB MCTP packet, the
Maximum Payload Size (MPS) applies to the MCTP payload itself excluding the MCTP
header and the optional PEC byte. For example, MPS of 64 bytes allows the transfer of
a MCTP packet with up to 64 bytes MCTP payload over the OOB Message channel. In
the case of 64 bytes MCTP payload with the optional PEC byte, the SMBus byte count
field and the OOB header length field are 69 bytes and 73 bytes respectively.

Figure 46: OOB MCTP Packet

For eSPI OOB generic SMBus block write packet, the Maximum Payload Size (MPS)
applies to the number of SMBus block write data bytes allowed in a packet excluding
the optional PEC byte. For example, MPS of 64 bytes allows the transfer of a generic
SMBus block write packet with up to 64 bytes data payload over the OOB Message
channel. In the case of 64 bytes data payload with the optional PEC byte, the SMBus
byte count field and the OOB header length field are 64 bytes and 68 bytes
respectively.

7 6 45 3 2 1 0

Destination Slave Address

Command Code =
MCTP = 0Fh

Byte 0

Byte 1

Byte 2

Cycle Type

Length[11:8]

Length[7:0]

Tag

Byte 3

Byte 4

OOB
Header

SMBus
Header

0

Byte 5 Byte Count

Byte 6 Source Slave Address

Byte 8 Destination Endpoint ID

Byte 9 Source Endpoint ID

1

Byte 7 Header
Version

MCTP
Reserved

Byte 10 S
O
M

E
O
M

Packet
Seq # T

O
Message

Tag

Message Payload

Byte 0
:
:
:
:
:
:

Byte n

Byte n+12

:
:
:
:
:

Byte 11

PEC

Byte n+11

SMBus
Block
Write
Data
Bytes

OOB with
Max Payload Size (MPS) = 64 bytes

for a 64 bytes MCTP packet (with PEC byte)

MCTP
Payload

(64 bytes)

MCTP
Header

(5 bytes)

SMBus
Header

(3 bytes)
Byte Count = (5+64) = 69 bytes

Length = (3+5+64+1) = 73 bytes

MCTP
Payload

(64 bytes)

MCTP
Header

(5 bytes)

PEC
(1 byte)PEC

OOB
Data

Note: PEC byte is excluded

Transaction Layer

327432-004 85

Figure 47: OOB Generic SMBus Block Write Format

5.2.4 Run-time Flash Access Channel

The Flash Access channel provides a path allowing the flash components to be shared
run-time between chipset and the eSPI slaves that require flash accesses such as EC
and BMC.

Once the Flash Controller in the chipset has completed the flash initialization, the
Flash Access channel is enabled on the eSPI slave side.

The Flash Access channel uses the same packet format as the eSPI Peripheral
Channel transactions.

The Tag field is used to match the completion with the request. Flash access requests
with the same tag must be completed in order.

OOB with
Max Payload Size (MPS) = 64 bytes

for a 64 bytes generic SMBus Block Write packet
(with PEC byte)

Payload
(64 bytes)

SMBus
Header

(3 bytes)
Byte Count = 64 bytes

Length = (3+64+1) = 68 bytes

Payload
(64 bytes)

7 6 45 3 2 1 0

SMBus Slave Address

SMBus Command Opcode

Byte 0

Byte 1

Byte 2

Cycle Type

Length[11:8]

Length[7:0]

Tag

Byte 3

Byte 4

SMBus Data Payload

Byte 0
:
:

Byte nByte n+6

:
:

OOB
Header

SMBus
Header

0

Byte 5

Byte n+7

SMBus Byte Count

PEC

SMBus
Block
Write
Data
Bytes

PEC
PEC

(1 byte)

OOB
Data

Note: PEC byte is excludedByte 6

Transaction Layer

86 327432-004

Figure 48: Flash Access Request Packet Format

Figure 49: Flash Access Completion Packet Format

7 6 45 3 2 1 0

Address [31:24]

Address [23:16]

Byte 0

Byte 1

Byte 2

Cycle Type

Length[11:8]

Length[7:0]

Tag

Byte 3

Address [15:8]

Address [7:0]

Byte 4

Byte 5

Byte 6

Data Byte 0

Data Byte 1
:
:
:

Data Byte n

Byte 7

Byte n+7

:
:
:

7 6 45 3 2 1 0

Address [31:24]

Address [23:16]

Byte 0

Byte 1

Byte 2

Cycle Type

Length[11:8]

Length[7:0]

Tag

Byte 3

Address [15:8]

Address [7:0]

Byte 4

Byte 5

Byte 6

Header

Data

Header

Flash Write

Flash Read/Flash Erase

7 6 45 3 2 1 0

Byte 0

Byte 1

Byte 2

Cycle Type

Length[11:8]

Length[7:0]

Tag

Byte 3 Data Byte 0

Data Byte 1
:
:
:

Data Byte nByte n+3

:
:
:

Header

Data

7 6 45 3 2 1 0

Byte 0

Byte 1

Byte 2

Length[11:8]

Length[7:0]

Tag

Cycle Type

Flash Read Completion

Flash Write/Erase Completion

Transaction Layer

327432-004 87

5.2.4.1 Master Attached Flash Sharing

Master Attached Flash Sharing refers to the scheme where flash components are
attached to the eSPI master such as the chipset. eSPI slaves are allowed to access to
the shared flash component through the Flash Access channel. The flash components
may be on an independent SPI interface, or on a shared SPI/eSPI interface depending
on the system configuration.

Figure 50: Independent Flash SPI and eSPI Interface

Figure 51: Shared SPI and eSPI Interface

eSPI Flash
Access

SPI Flash
Controller

EC/BMC/SIOFlash

eSPI Protocol Block

SPI eSPICS1# CS2#

eSPI Flash
Access

SPI Flash
Controller

EC/BMC/SIO
Flash

eSPI Protocol Block

SPI eSPI
CS1# CS2#

Transaction Layer

88 327432-004

eSPI slaves such as EC and BMC must be able to function appropriately with codes
executed from other storage devices such as its own ROM before Flash Access channel
is enabled for the run-time flash sharing.

The Master Attached Flash Sharing scheme uses 2 dedicated eSPI command opcodes:
GET_FLASH_NP and PUT_FLASH_C (Table 3).

Any run-time access to the flash component through the eSPI interface will go through
the eSPI master, which then routes the cycle to the Flash Access block, before the
cycle is forwarded to the SPI Flash Controller. SPI Flash controller will perform the
access to the flash on behalf of the eSPI slave.

SPI Flash controller as the flash device owner is responsible to handle the differences
between the different flash vendors, making them transparent to the flash access
channel on the eSPI bus.

The flash access addresses used by the eSPI slaves in the Flash Access transactions
are physical Flash Linear Addresses. The physical addresses cover the entire flash
addressing space. However, the SPI Flash controller may impose access permission
control for Flash Access transactions initiated by the eSPI slaves. The detail of the
access permission control is outside the scope of the specification.

Any attempt to access a flash region without the access permission is considered an
error. The SPI Flash controller is required to check this and would synthesize an
unsuccessful completion back to the eSPI slave.

The action taken by the eSPI slave in response to unsuccessful completion is
implementation specific.

In the Master Attached Flash Sharing scheme, Flash Read, Flash Write and Flash Erase
commands are supported over eSPI bus. These commands will be forwarded by the
eSPI master to the flash controller where they will be mapped to the corresponding
flash instructions by the flash controller.

Flash Read and Flash Write transactions are non-posted transactions. Each of the
transactions will have a corresponding completion which indicates the status of the
requested operation, together with data if the cycle is a Flash Read. The status of the
completion will be conveyed back to the eSPI slave.

Flash Access Channel Maximum Read Request Size parameter in the Channel
Capability and Configuration register is defined to allow the eSPI master to limit the
Flash Read request size to the size supported by the eSPI master.

Similarly, Flash Access Channel Maximum Payload Size parameter in the Channel
Capability and Configuration register is defined to allow the eSPI master to limit the
Flash Write data payload size.

Transaction Layer

327432-004 89

Flash Erase is a non-posted request with no data. This command instructs the SPI
Flash controller to erase a part of the region allocated to the eSPI slave. The Address
field specifies the beginning of the erase block and the least significant 3 bits of the
length field specifies the size of the block to be erased. The encoding of the least
significant 3 bits of the length field matches the value of the Flash Block Erase Size
field of the Channel Capabilities and Configuration register. The specified address must
be aligned to the block erase size. The supported erase block size is programmable
and is communicated by the eSPI master to the slave through the Channel Capabilities
and Configuration register.

eSPI master will forward the transaction as it is to the flash controller. The flash
controller will then perform the necessary check to ensure that the cycle is supported,
prior to sending it out to the flash. If the cycle is not supported due to invalid
addressing mode (32-bit versus 24/26-bit addressing), unsupported command,
unsupported block erase size or any other reasons, the flash controller will synthesize
an unsuccessful completion to the eSPI master which will then forward the completion
to the eSPI slave over the eSPI bus, without sending the instruction to flash.

5.2.4.2 Slave Attached Flash Sharing

Slave Attached Flash Sharing scheme is defined only for server platforms and it is not
included in the eSPI base specification.

The detail of the Slave Attached Flash Sharing is described in the eSPI addendum for
server platforms.

5.3 Slave Buffer Management
eSPI protocol defines a simplified buffer management mechanism. The eSPI slave
communicates the availability of new transactions for transmission and availability of
receive buffers to store the incoming transactions through the Status field of the
Response phase.

The eSPI master does not need to communicate the queue information to the eSPI
slave. eSPI master will wait until its relevant internal queue is free before servicing the
requests from slave. If ordering rule permits, the eSPI master can choose to service
another request which has queue resource available, while waiting for the relevant
queue resource to free up.

The eSPI slave is responsible to ensure ordering prior to presenting the request to the
eSPI master. A request should not be seen by the eSPI master through the Status
field until it has met the ordering requirement with respect to other pending requests.
For example, if a non-posted read at the top of the non-posted transmit queue is
ordered behind a posted write, the non-posted read should not set the NP_AVAIL bit in
the status register until all the posted writes in front of the non-posted read have
been evicted.

Transaction Layer

90 327432-004

The respective free indications can only be set if the eSPI slave receiver buffers can
accept at least one maximum payload size packet. The free indication in the Status
field returned as part of the Response phase must comprehend the buffer size
consumed by the current transaction. For example, if the eSPI master initiates a
posted write that exhausts the posted/completion queue of the eSPI slave receiver,
the PC_FREE indication must be cleared in the Status field during the Response Phase
of the corresponding command.

When the eSPI master issues a GET_* command, the Status field in the Response
Phase must reflect the next state of the buffer associated with the GET_* command.
For example, if the eSPI master issues a GET_PC and the PC_AVAIL Status bit is set
during the Response Phase of this command, it indicates that there is yet another
posted or completion transaction available after this command. If the PC_AVAIL Status
bit is cleared, it indicates that there is no additional posted or completion transactions
available after this command at the time of reporting.

The _AVAIL or _FREE, once asserted, must continue to be committed by eSPI slave
until the corresponding action is taken by master to the associated slave’s buffer. For
example, PC_AVAIL once asserted by slave must only be affected by GET_PC
command from master, PC_FREE once asserted by slave must only be affected by
PUT_PC command from master and so on. Once asserted, the slave is not allowed to
change the _AVAIL or _FREE indication due to other unrelated events.

Transaction Layer

327432-004 91

Figure 52: eSPI Slave Buffer Design (Conceptual)

5.4 Transaction Ordering Rule
The ordering rules specified here apply to the transactions within the same channel
and share the same Chip Select# pin. There is no ordering requirement between
transactions on different channels. There is no ordering requirement between
transactions with the same channel number but involving eSPI slaves using different
Chip Select# pin.

Row pass Column? Posted Request or
Completion Non-Posted Request

Posted Request or
Completion No1 Yes3

Non-Posted Request No2 No4

No - indicates that the subsequent transaction is not allowed to complete before the
previous transaction to preserve ordering in the system.

Peripheral Channel
(Channel 0)

Virtual Wire Channel
(Channel 1)

OOB Message Channel
(Channel 2)

Flash Access Channel
(Channel 3)

eSPI Master

eSPI Slave

Channel 0
Queue

N
P

R
X

Q
P

C
R

X
Q

N
P

TX
Q

P
C

TX
Q

Channel 2
Queue

R
X

Q
TX

Q

Channel 3
Queue

Fl
as

h
A

cc
es

s
R

X
Q

Fl
as

h
A

cc
es

s
TX

Q

Decode

Tunneled
Virtual Wires

A
va

il
Fr

ee
A

va
il

A
va

il
Fr

ee
A

va
il

Fr
ee

Transaction Layer

92 327432-004

Yes - indicates that the subsequent transaction must be allowed to complete before
the previous one or a deadlock can occur.

NOTES:

1. Posted request must not pass posted request to ensure the most updated data is
written last. Completion must pull posted write data back to the originating bus to
avoid stale data.

2. Non-posted request must push posted write data to avoid reading stale data.

3. Posted request or completion must be allowed to pass non-posted request to avoid
deadlocks.

4. Non-posted requests are not required to pass each other.

The transaction ordering rule requires eSPI master and eSPI slave to pre-allocate
completion buffer for every non-posted transactions they initiated. This ensures that
completion returned will not block the forward progress of any posted transactions
behind.

To avoid possible deadlock, there must be no in-out dependency between Transmit
(Tx) and Receive (Rx), specifically an eSPI agent cannot make freeing up of the Rx
queue for a channel dependent on the forward progress of the corresponding Tx
queue. This applies to all the corresponding Tx/Rx pairs for the peripheral channel,
virtual wire channel, OOB channel and flash access channel.

All the completions corresponding to the same channel with the same tag must be
returned in request order. There is no requirement for completions from the same
channel but different tag to be returned in request order. There is no requirement for
completions from different channel to be returned in request order.

5.5 Zero Length Read and Write
Zero length memory, I/O and Flash reads and writes are not supported.

§

Link Layer

327432-004 93

6 Link Layer

6.1 Single I/O, Dual I/O and Quad I/O Modes
All masters and slaves must support Single I/O mode of operation. Support for Dual
I/O and Quad I/O mode of operation is advertised by the slave through the General
Capabilities and Configurations register. Dual I/O and Quad I/O mode can be
independently support by a particular Enhanced Serial Peripheral Interface
(eSPI) slave.

By default coming out of eSPI Reset#, both master and slave operate in Single I/O
mode. The mode of operation can be changed by the master using the
SET_CONFIGURATION command.

The SET_CONFIGURATION is completed with the current mode of operation. The new
mode of operation will only take effect at the deassertion edge of the Chip Select#.

In Single I/O mode, I/O[1:0] pins are uni-directional. eSPI master drives the I/O[0]
during command phase, and response from slave is driven on the I/O[1]. eSPI slave is
required to tri-state I/O[1] during command phase as I/O[1] can be driven by eSPI
master such as when initiating an In-Band Reset command.

In Dual I/O mode, I/O[1:0] pins become bi-directional to form the bi-directional data
bus and all the command and response phases are transferred over the two bi-
directional pins at the same time, effectively doubling the transfer rate of the Single
I/O mode.

In Quad I/O mode, I/O[3:0] pins are bi-directional data bus and all the command and
response phases are transferred over the four bi-directional pins at the same time,
effectively doubling the transfer rate of the Dual I/O mode.

Each of the fields for an eSPI transaction is shifted out accordingly in the defined
order. For fields that contain multiple bytes, the order of the bytes being shifted out
on the eSPI bus is as follow: (LSB = Least Significant Byte, MSB = Most Significant
Byte)

• Header:

o Length: From MSB (with Tag field) to LSB

o Address: From MSB to LSB. This applies to eSPI transactions with
address including GET_CONFIGURATION and SET_CONFIGURATION.

• Data: From LSB to MSB

• Status: From LSB to MSB

Link Layer

94 327432-004

Each of the bytes is shifted from the most significant bit (bit[7]) to the least significant
bit (bit[0]).

An example of a master initiated peripheral channel memory read is as shown below.

Figure 53: Byte Ordering on the eSPI Bus

7 6 45 3 2 1 0

Address [31:24]

Address [23:16]

Command Opcode

Length [11:8]

Length [7:0]

Tag

Address [15:8]

Address [7:0]

CRC

Response Opcode

Data [7:0]

Data [15:8]

Data [23:16]

Data [31:24]

Status [7:0]

Status [15:8]

CRC

0

1

2

3

4

5

6

0

1

2

3

Length: MSB to LSB
“Tag”&Length[11:8] followed by Length[7:0]

Address: MSB to LSB
Addr[31:24] followed by Addr[23:16], Addr[15:8] and Addr[7:0]

Data: LSB to MSB
Data[7:0] followed by Data[15:8], Data[23:16] and Data[31:24]

Status: LSB to MSB
Status[7:0] followed by Status[15:8]

C
om

m
an

d
P

ha
se

R
es

po
ns

e
P

ha
se

Bytes are shifted out on eSPI bus in this order.
Each byte is shifted out from the most significant bit (msb) to the least significant bit (lsb).

Cycle Type

H
ea

de
r B

yt
e

Length [11:8]

Length [7:0]

Tag

Cycle Type

H
ea

de
r B

yt
e

D
at

a
B

yt
e

0

1

2

S
ta

tu
s

B
yt

e

0

1

Length: MSB to LSB
“Tag”&Length[11:8] followed by Length[7:0]

(Turn-Around)

Link Layer

327432-004 95

Figure 54: Single I/O Mode

C7 C6 C1 C0 H7 H6

` `

H1 H0 H15 H14

`

H49 H48 CR
7

`CR
6

CR
1

CR
0

Header Byte 0 Header Byte 6 CRCCommand Opcode

Chip Select #

Clock

I/O [0]

R7 R6 ` H17 H16 D7

`

D6 D25 D24

Response Opcode Data Byte 3

CR
7

`CR
6

CR
0

CRC

`

`
`

`
`

Chip Select #

Clock

I/O [1]

 1 6 7 8 9 14 15 16 17 . . . 62 63 . . . 64 65 71 72

74 75 104 105 106 107 . . . 136 137 138 139. . . 146 147 . . .

. . .

S7

`

S0

Status Byte 0

S15

`

S8

Status Byte 1

154 155 . . . 161 162 . . .

I/O [1]

Data Byte 0

I/O [0] `

Header Byte 2

Link Layer

96 327432-004

Figure 55: Dual I/O Mode

C6 C4 C2 C0 H6 H4 H2 H0 H14 H12 H50 H48

`CR
6

CR
2

CR
0

Header Byte 0 Header Byte 1 CRCCommand Opcode

Chip Select #

Clock

I/O [0]

R6 H18 H16 D6

`

D4 D26 D24

Response Opcode Data Byte 3

CR
6

CR
4

CR
2

CR
0

CRC

`

`
`

`
`

Chip Select #

Clock

I/O [0]

2 3 4 5 1 7 8 9 10 31 32 35 36

38 39 53 54 55 69 70 71 68 74

C7 C5 C3 C1 H7 H5 H3 H1 H15 H13 H51 H49

`CR
7

CR
3

CR
1I/O [1]

6

R7 H19 H17 D7

`

D5 D27 D25 CR
7

CR
5

CR
3

CR
1

`

I/O [1]

. . .

. . .

`

S6 S0

`

S7 S1

`

S14 S8

`

S15 S9

Status Byte 0 Status Byte 1

. . . 75 78. . . 79 80 81 82

`
`

Header Byte 6

. . .

Data Byte 0
`

`

Header Byte 2

. . .

Link Layer

327432-004 97

Figure 56: Quad I/O Mode

C4 C0 H4 H0 H12 H8 H20 H16 H28 H24 H36 H32 H52
`

H48 CR
4

CR
0

Header
Byte 0 CRCCommand Opcode

Chip Select #

Clock

I/O [0]

R4 H16 D4 D0 D12 D24

Response
Opcode

CR
4

CR
0

`

`
`

`
`

Chip Select #

Clock

I/O [0]

 1 3 4 5 6 2 8 9 10 11 12 17 18

20 21 28 29 30 31 36 37

C5 C1 H5 H1 H13 H9 H21 H17 H29 H25 H37 H33 H53

`

H49 CR
5

CR
1I/O [1]

7

R5 H17 D5 D1 D13 D25 CR
5

CR
1

`

I/O [1]

C6 C2 H6 H2 H14 H10 H22 H18 H30 H26 H38 H34 H54

`

H50 CR
6

CR
2

C7 C3 H7 H3 H15 H11 H23 H19 H31 H27 H39 H35 H55

`

H51 CR
7

CR
3

I/O [2]

I/O [3]

Header
Byte 1

Header
Byte 2

Header
Byte 3

Header
Byte 4

Header
Byte 6

R6 H18 D6 D2 D14 D26 CR
6

CR
2

`

R7 H19 D7 D3 D15 D27 CR
7

CR
3

`

I/O [2]

I/O [3]

Header
Byte 2

Data
Byte 0

Data
Byte 3

CRC

. . .

38

S4 S0

S5 S1

S6 S2

S7 S3

Status
Byte 0

S12 S8

S13 S9

S14 S10

S15 S11

Status
Byte 1

 39 40 41 42

16

`
`

`
`

. . .

`
`

`
`

Data
Byte 1

. . .

Link Layer

98 327432-004

6.2 Cyclic Redundancy Check (CRC)
CRC-8 is used to protect the eSPI transaction packets. The Command Phase and
Response Phase contain respective CRC byte. For Command Phase, the CRC
calculation includes all the bytes during the Command Phase such as the Command
Opcode, Header (if present) and Data (if present). For Response Phase, the CRC
calculation includes all the bytes during the Response Phase such as the Response
code (except WAIT_STATE Response Code which is not included in the CRC
calculation), Header (if present), Data (if present) and Status.

The CRC value is calculated using the following rules:

• The polynomial is expressed as: x8 + x2 + x + 1.
• The polynomial used for the CRC calculation has a coefficient expressed as

“07h”.
• The seed value is “00h”. The CRC storage registers are reset to the initial

value of 00h prior to any CRC byte calculation.
• The CRC calculation starts with bit[7] of byte 0 and proceeds from bit[7] to

bit[0] of each byte.

CRC generation is mandatory for eSPI. However, CRC checking is default disabled
after eSPI reset# and it is enabled through SET_CONFIGURATION by setting the CRC
Checking Enable bit whereby upon the successful SET_CONFIGURATION, CRC
checking is enabled on both eSPI master and eSPI slave at the deassertion edge of
CS#. Both eSPI master and eSPI slave must always be capable of supporting CRC
checking as platform requirements determine if CRC checking will be enabled for an
eSPI interface.

When CRC checking is disabled, the CRC byte is ignored by the receiver.

Figure 57: CRC Polynomial Representation

Q

Q SET

CLR

D

Q

Q SET

CLR

D

Q

Q SET

CLR

D

Q

Q SET

CLR

D

Q

Q SET

CLR

D

Q

Q SET

CLR

D

Q

Q SET

CLR

D

Q

Q SET

CLR

D

Q0Q1Q2Q3Q4Q5Q6Q7

Bit stream.
Starts with bit[7] of byte 0 and
proceeds from bit[7] to bit[0] of each byte

CRC polynomial: x8 + x2 + x + 1

Link Layer

327432-004 99

Table 17: CRC Byte with Input Data D7:D0 (⊕ denotes logical XOR)

 1st Clock 2nd Clock 3rd Clock 4th Clock

Q0 D7 D6 D5 D4

Q1 D7 D7⊕D6 D6⊕D5 D5⊕D4

Q2 D7 D7⊕D6 D7⊕D6⊕D5 D6⊕D5⊕D4

Q3 0 D7 D7⊕D6 D7⊕D6⊕D5

Q4 0 0 D7 D7⊕D6

Q5 0 0 0 D7

Q6 0 0 0 0

Q7 0 0 0 0

 5th Clock 6th Clock 7th Clock
8th Clock.

CRC = Q7:0

Q0 D3 D2 D7⊕D1 D7⊕D6⊕D0

Q1 D4⊕D3 D3⊕D2 D7⊕D2⊕D1 D6⊕D1⊕D0

Q2 D5⊕D4⊕D3 D4⊕D3⊕D2 D7⊕D3⊕D2⊕D1 D6⊕D2⊕D1⊕D0

Q3 D6⊕D5⊕D4 D5⊕D4⊕D3 D4⊕D3⊕D2 D7⊕D3⊕D2⊕D1

Q4 D7⊕D6⊕D5 D6⊕D5⊕D4 D5⊕D4⊕D3 D4⊕D3⊕D2

Q5 D7⊕D6 D7⊕D6⊕D5 D6⊕D5⊕D4 D5⊕D4⊕D3

Q6 D7 D7⊕D6 D7⊕D6⊕D5 D6⊕D5⊕D4

Q7 0 D7 D7⊕D6 D7⊕D6⊕D5

§

Slave Registers

100 327432-004

7 Slave Registers
The Enhanced Serial Peripheral Interface (eSPI) defines a set of slave registers. These
registers are required for enumeration, configuration and for proper operation of the
respective independent channels defined for the eSPI bus.

The following tables describe the register attribute and register default value
encodings used in this specification.

Table 18: Register Attribute Description

Register Attribute Description

RO Read-Only. Register bits are read-only and cannot
be altered by software.

Table 19: Register Default Values Encoding Description

Register Default
Value

Description

Platform Specific Platform Specific. The default value of the register
is platform specific.

Table Table. The default value advertised in this field is
described by a table. See the description of the
register to associate the register with the
corresponding table.

HwInit Hardware-Init. Register with the default value
marked as “HwInit” indicates that the default value is
determined by the hardware capability and the
default value should reflect the supported hardware
capability.

7.1 Status Register
The Status register bits are reset by eSPI Reset#.

The content of the Status register is returned in the corresponding Status field of the
Response Phase.

Refer to Section 4.4.2 for the description of the Status register field.

Slave Registers

327432-004 101

7.2 Capabilities and Configuration Registers
The capabilities and configuration register bits are reset by eSPI Reset#. In addition,
the register may be reset by additional reset as described in the respective register
section.

Register fields that are marked as Reserved must always return zero when read.
Writing to the Reserved fields has no effect.

The GET_CONFIGURATION and SET_CONFIGURATION commands are used to access
these registers. The registers are only accessible on DWord granularity. When
configuring the registers using the SET_CONFIGURATION command, the new register
value to the slave will only take effect at the deassertion edge of the Chip Select#.
Thus, the SET_CONFIGURATION command is ran on the eSPI bus based on the
current pre-configured settings.

Registers from offset 800h to FFFh are reserved as platform specific. This provides a
2KB register space for platform specific application.

Table 20: Slave Registers

Start
(Hex)

End
(Hex)

Register Name

000 003 Reserved

004 007 Device Identification

008 00B General Capabilities and Configurations

00C 00F Reserved

010 013 Channel 0 Capabilities and Configurations

014 01F Reserved

020 023 Channel 1 Capabilities and Configurations

024 02F Reserved

030 033 Channel 2 Capabilities and Configurations

034 03F Reserved

040 043 Channel 3 Capabilities and Configurations

044 7FF Reserved

800 FFF Platform Specific registers

Slave Registers

102 327432-004

7.2.1.1 Offset 00h: Reserved

7.2.1.2 Offset 04h: Device Identification

Bit Type Default Description

31:8 RO 0 Reserved.

7:0 RO 01h

Version ID: Indicates compliance to specific eSPI
specification revision.

Slaves compliant to this revision of the specification must
advertise a value of “01h” in this field.

7.2.1.3 Offset 08h: General Capabilities and Configurations

This register is also reset by the In-band RESET command.

Bit Type Default Description

31 RW 0b

CRC Checking Enable: This bit is set to ‘1’ by eSPI
master to enable the CRC checking on the eSPI bus.
By default, CRC checking is disabled.

0b: CRC checking is disabled.
1b: CRC checking is enabled.

30 RW 0b

Response Modifier Enable: This bit is set to ‘1’ to
enable the use of Response Modifier by eSPI slave to
append either a peripheral (channel 0) completion, a
virtual wire (channel 1) packet or a flash access (channel
3) completion to the GET_STATUS response phase.
When this bit is a ‘0’, eSPI slave must only use the
Response Modifier of “00”, i.e. no append.
By default, the Response Modifier is disabled.

29 RO 0 Reserved.

Slave Registers

327432-004 103

Bit Type Default Description

28 RW 0b

Alert Mode: This bit serves to configure the Alert
mechanism used by the slave to initiate a transaction on
the eSPI interface.

0b: I/O[1] pin is used to signal the Alert event.

1b: Alert# pin is used to signal the Alert event.

Note: This bit can only be ‘0’ or ‘1’ in a single master-
single slave topology. For single master-multiple slave
topology, this bit must be programmed to ‘1’.

Alert Mode is allowed to change from default ‘0’ to ‘1’
during runtime in both single or multiple slaves topologies
provided when this happens, only a single slave is enabled
for generating Alert# event.

27:26 RW 00b

I/O Mode Select: eSPI master programs this field to
enable the appropriate mode of operation, which will take
effect at the deassertion edge of the Chip Select#.

The I/O Mode configured in this field must be supported
by both the master and the slave. Single I/O mode is
supported by default.

Encoding Operating Mode

00 Single I/O

01 Dual I/O

10 Quad I/O

11 Reserved.

Slave Registers

104 327432-004

Bit Type Default Description

25:24 RO HwInit

I/O Mode Support: This field indicates the I/O modes
supported by the slave.

Encoding Supported I/O Mode

00 Single I/O

01 Single and Dual I/O

10 Single and Quad I/O

11 Single, Dual and Quad I/O

23 RW 0

Open Drain Alert# Select: This bit is set to ‘1’ by eSPI
master to configure the Alert# pin as an open-drain
output.
By default, Alert# pin operates as a driven output. This
bit must only be programmed to ‘1’ if open-drain Alert#
pin is supported by the slave.
The bit must be valid when Alert Mode bit is a ‘1’
indicating Alert# pin is used for signaling the Alert event.
0b: Alert# pin is a driven output.
1b: Alert# pin is an open-drain output.

22:20 RW 000b

Operating Frequency: This field identifies the frequency
of operation.

Bits Frequency
000 20 MHz
001 25 MHz
010 33 MHz
011 50 MHz
100 66 MHz
Others Reserved.

Note: This field has a default value of “000” to reflect
tINIT-FREQ (Table 22) of 20MHz max.

19 RO HwInit

Open Drain Alert# Supported: This bit indicates the
support of the Alert# pin as an open-drain output by the
slave.

0b: Open-drain Alert# pin is not supported.
1b: Open-drain Alert# pin is supported.

Slave Registers

327432-004 105

Bit Type Default Description

18:16 RO HwInit

Maximum Frequency Supported: This field identifies
the maximum frequency of operation supported by the
slave.

Bits Frequency
000b 20 MHz
001b 25 MHz
010b 33 MHz
011b 50 MHz
100b 66 MHz
Others Reserved.

The slave that indicates support for the maximum
frequency of operation through this field will also support
all the lower frequencies on the list.

Note: Support for tINIT-FREQ (Table 22) is mandatory.

15:12 RW 0

Maximum WAIT STATE Allowed: eSPI master sets the
maximum WAIT STATE allowed to be responded by slave
before the slave must respond with an ACCEPT, DEFER,
NON-FATAL ERROR or FATAL ERROR response code.

This is a 1-based field in the granularity of byte time.
When “0”, it indicates a value of 16 byte time.

A byte time corresponds to 8 serial clocks in the Single
I/O mode, 4 serial clocks in the Dual I/O mode or 2 serial
clocks in the Quad I/O mode.

11:8 RO 0 Reserved.

7:0 RO HwInit

Channel Supported: Each of the bits when set indicates
that the corresponding channel is supported by the slave.

Bits Channel

0 Peripheral Channel

1 Virtual Wire Channel

2 OOB Message Channel

3 Flash Access Channel

4:7 Reserved for platform specific channels

Slave Registers

106 327432-004

7.2.1.4 Offset 10h: Channel 0 Capabilities and Configurations

This register is also reset by the Platform Reset (PLTRST#).

Bit Type Default Description

31:15 RO 0 Reserved.

14:12 RW 001b

Peripheral Channel Maximum Read Request Size:
eSPI master sets the maximum read request size for the
Peripheral channel.

The length of the read request must not cross the
naturally aligned address boundary of the corresponding
Maximum Read Request Size.

000b: Reserved.
001b: 64 bytes address aligned max read request size.
010b: 128 bytes address aligned max read request size.
011b: 256 bytes address aligned max read request size.
100b: 512 bytes address aligned max read request size.
101b: 1024 bytes address aligned max read request size.
110b: 2048 bytes address aligned max read request size.

111b: 4096 bytes address aligned max read request
size.

11 RO 0 Reserved.

Slave Registers

327432-004 107

Bit Type Default Description

10:8 RW 001b

Peripheral Channel Maximum Payload Size
Selected: eSPI master sets the maximum payload size
for the Peripheral channel.

The value set by the eSPI master must never be more
than the value advertised in the Max Payload Size
Supported field.

The payload of the transaction must not cross the
naturally aligned address boundary of the corresponding
Maximum Payload Size.

000b: Reserved.
001b: 64 bytes address aligned max payload size.
010b: 128 bytes address aligned max payload size.
011b: 256 bytes address aligned max payload size.

100b – 111b: Reserved.

7 RO 0 Reserved.

6:4 RO HwInit

Peripheral Channel Maximum Payload Size
Supported: This field advertises the Maximum Payload
Size supported by the slave.

000b: Reserved.
001b: 64 bytes address aligned max payload size.
010b: 128 bytes address aligned max payload size.
011b: 256 bytes address aligned max payload size.

100b – 111b: Reserved.

3 RO 0 Reserved.

2 RW 0b

Bus Master Enable: When this bit is a ‘0’, it disables
the slave from generating bus mastering cycles on the
Peripheral channel. When this bit is a ‘1’, it allows the
slave to generate bus mastering cycles on the Peripheral
channel.
Prior to clearing the Bus Master Enable bit from ‘1’ to ‘0’,
there must be no outstanding non-posted cycle pending
completion from the slave.

Slave Registers

108 327432-004

Bit Type Default Description

1 RO 0b

Peripheral Channel Ready: When this bit is a ‘1’, it
indicates that the slave is ready to accept transactions on
the Peripheral channel.
eSPI master should poll this bit after the channel is
enabled before running any transaction on this channel to
the slave.
0b: Channel is not ready.

1b: Channel is ready.

0 RW 1b

Peripheral Channel Enable: The channel is by default
enabled after the eSPI Reset#.

This bit is cleared to ‘0’ by eSPI master to disable the
Peripheral channel. Besides, clearing this bit from ‘1’ to
‘0’ triggers a reset to the Peripheral channel. The channel
remains disabled until this bit is set to ‘1’ again.

Prior to disabling the Peripheral channel, the Bus Master
Enable bit should be cleared to ‘0’ to disable the bus
mastering cycles.

Slave Registers

327432-004 109

7.2.1.5 Offset 20h: Channel 1 Capabilities and Configurations

Bit Type Default Description

31:22 RO 0 Reserved.

21:16 RW 0

Operating Maximum Virtual Wire Count: The
maximum number of Virtual Wire groups that can be sent
in a single Virtual Wire packet.

This is a 0-based count. The default value of 0 indicates
count of 1.

The value configured in this field must never be more
than the value advertised in the Maximum Virtual Wire
Count Supported field.

15:14 RO 0 Reserved.

13:8 RO HwInit

Maximum Virtual Wire Count Supported: This field
advertises the Maximum Virtual Wire Count supported by
the slave.

If the slave supports different count value as initiator and
as receiver of the Virtual Wires, this field indicates the
lower of the two.

The Virtual Wire Count specifies the maximum number of
Virtual Wire groups being communicated in a single
Virtual Wire packet.

eSPI slave must advertise a value of “000111b” or more
in this field to indicate the support of at least 8 Virtual
Wire groups being communicated in a single Virtual Wire
packet.

This is a 0-based count.

7:2 RO 0 Reserved.

1 RO 0b

Virtual Wire Channel Ready: When this bit is a ‘1’, it
indicates that the slave is ready to accept transactions on
the Virtual Wire channel.
eSPI master should poll this bit after the channel is
enabled before running any transaction on this channel to
the slave.
0b: Channel is not ready.

1b: Channel is ready.

Slave Registers

110 327432-004

Bit Type Default Description

0 RW 0b

Virtual Wire Channel Enable: This bit is set to ‘1’ by
eSPI master to enable the Virtual Wire channel.

Clearing this bit from ‘1’ to ‘0’ will not reset the Virtual
Wire channel whereby the state of all the Virtual Wires
must continue to be maintained internally. When this bit
is ‘0’, no transaction shall occur on the Virtual Wire
channel.

The channel is by default disabled after the eSPI Reset#.

7.2.1.6 Offset 30h: Channel 2 Capabilities and Configurations

Bit Type Default Description

31:11 RO 0 Reserved.

10:8 RW 001b

OOB Message Channel Maximum Payload Size
Selected: eSPI master sets the maximum payload size
for the OOB Message channel.

The value set by the eSPI master must never be more
than the value advertised in the Max Payload Size
Supported field.

The Maximum Payload Size applies to the actual payload
of the protocol embedded in the OOB packet. Refer to
Section 5.2.3 for the detail of the OOB message payload.

000b: Reserved.
001b: 64 bytes max payload size.
010b: 128 bytes max payload size.
011b: 256 bytes max payload size.

100b – 111b: Reserved.

7 RO 0b Reserved.

Slave Registers

327432-004 111

Bit Type Default Description

6:4 RO HwInit

OOB Message Channel Maximum Payload Size
Supported: This field advertises the Maximum Payload
Size supported by the slave.
The Maximum Payload Size applies to the actual payload
of the protocol embedded in the OOB packet. Refer to
Section 5.2.3 for the detail of the OOB message payload.

000b: Reserved.
001b: 64 bytes max payload size.
010b: 128 bytes max payload size.
011b: 256 bytes max payload size.

100b – 111b: Reserved.

3:2 RO 0 Reserved.

1 RO 0b

OOB Message Channel Ready: When this bit is a ‘1’, it
indicates that the slave is ready to accept transactions on
the OOB Message channel.
eSPI master should poll this bit after the channel is
enabled before running any transaction on this channel to
the slave.
0b: Channel is not ready.
1b: Channel is ready.

0 RW 0b

OOB Message Channel Enable: This bit is set to ‘1’ by
eSPI master to enable the OOB Message channel.

Clearing this bit from ‘1’ to ‘0’ triggers a reset to the OOB
Message channel such as during error handling. The
channel remains disabled until this bit is set to ‘1’ again.

The channel is by default disabled after the eSPI Reset#.

7.2.1.7 Offset 40h: Channel 3 Capabilities and Configurations

Bit Type Default Description

31:15 RO 0b Reserved.

Slave Registers

112 327432-004

Bit Type Default Description

14:12 RW 001b

Flash Access Channel Maximum Read Request
Size: eSPI master sets the maximum read request size
for the Flash Access channel.

The length of the read request must not exceed the
corresponding Maximum Read Request Size with no
address alignment requirement.

000b: Reserved.
001b: 64 bytes max read request size.
010b: 128 bytes max read request size.
011b: 256 bytes max read request size.
100b: 512 bytes max read request size.
101b: 1024 bytes max read request size.
110b: 2048 bytes max read request size.

111b: 4096 bytes max read request
size.

11 RO 0b

Flash Sharing Mode: When Flash Access channel is
supported, this bit advertises the flash sharing scheme
intended by the slave.
0b: Master attached flash sharing.
1b: Slave attached flash sharing.
This bit is a Read-Only ‘0’ in the base specification as
only master attached flash sharing is defined.

10:8 RW 001b

Flash Access Channel Maximum Payload Size
Selected: eSPI master sets the maximum payload size
for the Flash Access channel.

The value set by the eSPI master must never be more
than the value advertised in the Max Payload Size
Supported field.

000b: Reserved.
001b: 64 bytes max payload size.
010b: 128 bytes max payload size.
011b: 256 bytes max payload size.

100b – 111b: Reserved.

Slave Registers

327432-004 113

Bit Type Default Description

7:5 RO HwInit

Flash Access Channel Maximum Payload Size
Supported: This field advertises the Maximum Payload
Size supported by the slave.

000b: Reserved.
001b: 64 bytes max payload size.
010b: 128 bytes max payload size.
011b: 256 bytes max payload size.
100b – 111b: Reserved.

4:2 RW 01b

Flash Block Erase Size: eSPI master sets this field to
communicate the block erase size to the slave.

This field is applicable only to master attached flash
sharing scheme.

000b: Reserved

001b: 4 Kbytes

010b: 64 Kbytes

011b: Both 4 Kbytes and 64 Kbytes are supported
100b: 128 Kbytes
101b: 256 Kbytes
110b – 111b: Reserved

1 RO 0b

Flash Access Channel Ready: When this bit is a ‘1’, it
indicates that the slave is ready to accept transactions
on the Flash Access channel.
eSPI master should poll this bit after the channel is
enabled before running any transaction on this channel
to the slave.
0b: Channel is not ready.
1b: Channel is ready.

0 RW 0b

Flash Access Channel Enable: This bit is set to ‘1’ by
eSPI master to enable the Flash Access channel.

Clearing this bit from ‘1’ to ‘0’ triggers a reset to the
Flash Access channel such as during error handling. The
channel remains disabled until this bit is set to ‘1’ again.

The channel is by default disabled after the eSPI
Reset#.

§

Operating Specification

114 327432-004

8 Operating Specification

8.1 Electrical Specification
NOTE: The electrical specification defined in this section is preliminary and it is subjected to

change.

Table 21: Electrical Specification

Symbol Parameter Condition Min Typ Max Unit

Vcc eSPI I/O voltage 1.71 1.8 1.89 V

RON Output driver impedance Vout = Vcc/2 15 25 35 Ohm

VIL Input low voltage 0.3*Vcc V

VIH Input high voltage 0.7*Vcc V

VHYS Input hysteresis voltage 0.1*Vcc V

R1reset-PU Weak pull-up impedance Vout = 0.7*Vcc 10k 30k Ohm

R1reset-PD Weak pull-down impedance Vout = 0.3*Vcc 10k 30k Ohm

Ralert-PU
Weak pull-up impedance
for Alert# pin

Vout = 0.7*Vcc 4.7k3 Ohm

Cin Input capacitance 5 pF

CL2 Load capacitance 10 pF

IIL Input leakage current 0 < Vin < Vcc ±10 uA

NOTES:

1. Weak pull-up on eSPI data and Chip Select# pins (except Alert# pin) and weak
pull-down on eSPI clock must be implemented as an integral part of the eSPI
master buffer or on the board.

2. CL is the test load defined for AC timing measurement.

3. The weak pull-up impedance value is defined for a typical eSPI bus loading when
Alert# pin is configured as open-drain. Platform is required to adjust this value
accordingly such that when Alert# pin is asserted, the assertion of the CS# for the
shortest possible transaction (which causes the slave to tri-state the Alert# pin),
is able to pull the Alert# pin high fast enough to the deasserted value before or by
the last failing edge of the serial clock at the end of the transaction.

Operating Specification

327432-004 115

8.2 Timing Parameters
All timing parameters for the Enhanced Serial Peripheral Interface (eSPI) are specified
from a device (slave) perspective. The host is required to account for channel effects
in meeting the specified timings with the device.

NOTE: The timing parameters defined in this section are preliminary and they are subjected
to change.

 Table 22: AC Timing Specification

Symbol Parameter Description

tCKH Clock High Time

tCKL Clock Low Time

tSLCH Chip Select# Setup Time

tCLSH Chip Select# Hold Time

tSHSL Chip Select# Deassertion Time

tDVCH Data In Setup Time

tCHDX Data In Hold Time

tCLQZ Output Disable Time during Turn-Around

tCLQV Output Data Valid Time

tCLQX Output Data Hold Time

tSHQZ Output Disable Time after Chip Select# Deassertion

tSLAZ Chip Select# Assertion to I/O[1] Tri-stated

tSHAA Chip Select# Deassertion to I/O[1] Assertion

tINIT eSPI Reset# Deassertion to First Transaction (GET_CONFIGURATION)

tINIT-FREQ Initial Bus Frequency upon eSPI Reset# Deassertion

Symbol
20 MHz 25 MHz 33 MHz 50 MHz 66 MHz

Min Max Min Max Min Max Min Max Min Max Unit

tCK 50 40 30 20 15 ns

tCKH 0.4 0.4 0.4 0.4 0.4 tCK
tCKL 0.4 0.4 0.4 0.4 0.4 tCK

tSLCH 75 60 45 30 22 ns

tCLSH 50 40 30 20 15 ns

tSHSL 50 40 30 20 15 ns

tDVCH 12 10 7 5 3 ns

Operating Specification

116 327432-004

Symbol
20 MHz 25 MHz 33 MHz 50 MHz 66 MHz

Min Max Min Max Min Max Min Max Min Max Unit

tCHDX 12 10 7 5 3 ns

tCLQZ 15 12 9 8 6 ns

tCLQV 20 15 10 8 6 ns

tCLQX 0 0 0 0 0 ns

tSHQZ 15 12 9 8 6 ns

tSLAZ 15 12 9 8 6 ns

tSHAA 15 12 9 8 6 ns

tINIT 1 1 1 1 1 us

tINIT-FREQ 20 20 20 20 20 MHz

Figure 58: Input Timing Diagram

COMMAND

CLK

Chip Select#

Data[n:0] ALERT#
(I/O[1]) RESPONSE

tSLAZ

tSLCH tCLSH

tDVCH tCHDX tSHSL

CLK

Chip Select#

tDVCH

tCHDX tCHDX

tDVCH

ALERT#
(I/O[1]) C C C C C C C C CData[n:0]

tCLQZ

tri-stated

tSHAA

tSHQZ

Operating Specification

327432-004 117

Figure 59: Output Timing Diagram

§

tCK

tCKL

COMMAND

CLK

Chip Select#

Data[n:0]

tCLQV

Alert#
(driven)

tCKH tCLQX

tSHQZ

CLK

Chip Select#

Data[n:0]

tCLQV

Alert#
(driven)

tCLQX

R R R R R R R R

tCLQX

tCLQV

tri-stated

Alert#
(open-drain)

tCLSH

Alert#
(open-drain)

Pulled high before or by the last falling edge of the serial clock

weak pull-up

weak pull-up

System Architecture

118 327432-004

9 System Architecture

9.1 Interrupts
The Enhanced Serial Peripheral Interface (eSPI) provides a mechanism for eSPI
endpoints that are transparent to software to communicate their interrupts through
the Interrupt Event Virtual Wires.

eSPI endpoints from different channels share the same set of interrupt lines routed
over the dedicated Virtual Wire channel.

Interrupts sent as the Interrupt Event Virtual Wires will be mapped to the respective
IRQ lines. The detail of interrupt mapping is platform specific and outside the scope of
the specification.

The ACPI method is used to communicate the IRQ number used by the
eSPI endpoints.

The specification does not preclude the endpoints that are transparent to PCI software
from using Message Signaled Interrupt (MSI). However, the method to enable MSI
support is beyond the scope of the specification.

9.2 Error Detection and Handling
eSPI bus supports error detection capability through CRC protection when CRC
checking is enabled. The errors detected can be logged and reported through the
respective eSPI master configuration space, which is outside the scope of
this specification.

There is no error correction capability or hardware recovery mechanism defined for
the eSPI bus.

The categories of errors that are detectable over the eSPI bus by the eSPI slave and
the eSPI master are described in Section 9.2.1 and 9.2.2.

Due to lack of hardware recovery mechanism, all the errors detected on the eSPI bus
fall into one of the Fatal or non-Fatal category.

Segregating the errors into Fatal and non-Fatal categories is optional. It provides a
path for the software to handle the non-Fatal error in a more robust manner instead of
treating the non-Fatal error as System Error.

eSPI master that does not support the segregation of errors into Fatal and non-Fatal
categories may choose to handle these errors in the same manner.

System Architecture

327432-004 119

eSPI slaves that do not support the segregation of errors into Fatal and non-Fatal
errors may choose to report all errors as Fatal Error response.

When eSPI Fatal Errors cannot be recovered by software, an eSPI_Reset# is required
to be asserted to reset both eSPI master and slave. This may lead to a platform level
reset for the recovery.

Note: Implementation Note: If error segregation into Fatal and non-Fatal errors is
supported, the eSPI master can choose to generate a System Error in response to
Fatal Error and generate an interrupt or SMI# in response to Non-Fatal Error.
Handling the error through interrupt or SMI# requires the corresponding device driver
or BIOS support.

9.2.1 Slave’s Detected Errors

This section describes the error detection and handling requirements for eSPI slave.

During the detection, the error may fall under one of the following Detection
Phase (DP):

1. Error results in uncertainty on the command phase boundary. In this case, CRC
checking is not applicable as CRC byte location is not known.

2. Command phase CRC error. Command packet is successfully decoded and its
boundary is known. However, CRC error is detected on the command packet.

3. Correct CRC but other error detected. The error results in eSPI slave not being
able to complete the execution of the command packet received.

4. Error detected outside of the command phase, such as unexpected deaasertion of
Chip Select#, or any internal error detected by eSPI slave. The details of the
internal errors are beyond the scope of the specification.

 Table 23: Slave’s Detected Errors

Error Condition1 DP2 R/O3

Slave’s Response and Handling

Response Code (RC), Completion (C), Virtual Wire
(VW)

RC C VW Description

Invalid Command Opcode 1 R X
NO_RESPONSE Response Code.
Command is discarded

Invalid Cycle Type

(with respect to command)
1 R X

NO_RESPONSE Response Code.
Command is discarded

System Architecture

120 327432-004

Error Condition1 DP2 R/O3

Slave’s Response and Handling

Response Code (RC), Completion (C), Virtual Wire
(VW)

RC C VW Description

Command phase CRC Error 2 R X
NO_RESPONSE Response Code.
Command is discarded

Unexpected deassertion of Chip
Select#

1, 4 R

Slave tri-state the bus tSHQZ after
Chip Select# is deasserted.

Note: Master is expected to detect
CRC error during the response phase
if CRC checking is enabled

Protocol Error

• PUT without FREE
• GET without AVAIL

3 R X
FATAL_ERROR Response Code.
Command is discarded

Malformed Packet during
Command Phase

Peripheral Channel:
• Payload length > Max

Payload Size (aligned)
• Read request size > Max

Read Request Size (aligned)
• (Address + Length) crosses

4KB (aligned) boundary

Virtual Wire Channel:

• Count > Max Virtual Wire
Count

OOB Channel:

• SMBus Byte Count > Max
Payload Size

Flash Access Channel:

• Payload length > Max Payload
Size

• Read request size > Max Read
Request Size

3 R X X

FATAL_ERROR Response Code.
Command is discarded.

or

FATAL ERROR Virtual Wire. Before
signaling the FATAL ERROR Virtual
Wire, the transaction is completed on
the eSPI bus (ACCEPT) with the
following:

Posted: Command is discarded

Completion: Command is discarded

Non-posted: Unsuccessful Completion
without Data is returned and
command discarded

Virtual Wire: Command is discarded

System Architecture

327432-004 121

Error Condition1 DP2 R/O3

Slave’s Response and Handling

Response Code (RC), Completion (C), Virtual Wire
(VW)

RC C VW Description

Unsupported Command

(excluding Short Command)
3 O X X X

NON_FATAL_ERROR Response Code.
Command is discarded.

or

NON-FATAL ERROR Virtual Wire
(when command is posted). Before
signaling the NON-FATAL ERROR
Virtual Wire, the transaction is
completed on the eSPI bus with
command discarded.

or

Unsuccessful Completion without Data
(when command is non-posted). The
transaction is completed with
unsuccessful completion returned and
command discarded

Unsupported Cycle Type

(with respect to command)
3 O X X X

NON_FATAL_ERROR Response Code.
Command is discarded.

or

NON-FATAL ERROR Virtual Wire
(when command is posted). Before
signaling the NON-FATAL ERROR
Virtual Wire, the transaction is
completed on the eSPI bus with
command discarded.

or

Unsuccessful Completion without
Data (when command is non-posted).
The transaction is completed with
unsuccessful completion returned and
command discarded

Unsupported Message Code 3 O X X

NON_FATAL_ERROR Response Code.
Command is discarded.

or

NON-FATAL ERROR Virtual Wire.
Before signaling the NON-FATAL
ERROR Virtual Wire, the Message
transaction is completed on the eSPI
bus with command discarded

System Architecture

122 327432-004

Error Condition1 DP2 R/O3

Slave’s Response and Handling

Response Code (RC), Completion (C), Virtual Wire
(VW)

RC C VW Description

Unsupported Length,
Unsupported Address/Length
alignment,

Out of Range Address/Length
combination

(excluding Short Command)

3 O X X X

NON_FATAL_ERROR Response Code.
Command is discarded.

or

NON-FATAL ERROR Virtual Wire
(when command is posted). Before
signaling the NON-FATAL ERROR
Virtual Wire, the transaction is
completed on the eSPI bus with
command discarded.

or

Unsuccessful Completion without Data
(when command is non-posted). The
transaction is completed with
unsuccessful completion returned and
command discarded

Short Command (terminated as
connected, non-DEFER) that fails
to be completed successfully

• PUT_IORD_SHORT
• PUT_IOWR_SHORT
• PUT_MEMRD32_SHORT
• PUT_MEMWR32_SHORT

3 O X X

NON_FATAL_ERROR Response Code.
Command is discarded.

or

NON-FATAL ERROR Virtual Wire.
Before signaling the NON-FATAL
ERROR Virtual Wire, the transaction is
completed on the eSPI bus with the
following:

Posted: Command is discarded

Non-posted: Data of all 1’s is
returned for non-posted requires
data. Command is discarded

All other posted Command that
fails to be completed successfully

3 O X X

NON_FATAL_ERROR Response Code.
Command is discarded.

or

NON-FATAL ERROR Virtual Wire.
Before signaling the NON-FATAL
ERROR Virtual Wire, the transaction is
completed on the eSPI bus with
command discarded

System Architecture

327432-004 123

Error Condition1 DP2 R/O3

Slave’s Response and Handling

Response Code (RC), Completion (C), Virtual Wire
(VW)

RC C VW Description

All other non-posted Command
that fails to be completed
successfully, including Short
Command after DEFER

3 O X X

NON_FATAL_ERROR Response Code.
Command is discarded.

or

Unsuccessful Completion without
Data. The transaction is completed
with unsuccessful completion returned
and command discarded

Unexpected completion received
(i.e. completion without non-
posted request, or completion
with invalid tag)

3 O X X

NON_FATAL_ERROR Response Code.
Command is discarded.

or

NON-FATAL ERROR Virtual Wire.
Before signaling the NON-FATAL
ERROR Virtual Wire, the transaction is
completed on the eSPI bus with
command discarded

All other Non-Fatal Error
conditions detected by the Slave

(including errors detected
outside of the bus transaction)

3, 4 O X NON-FATAL ERROR Virtual Wire

All other Fatal Error conditions
detected by the Slave

(including errors detected
outside of the bus transaction)

3, 4 O X FATAL ERROR Virtual Wire

Unsupported or Reserved Virtual
Wire (VW) with Valid bit set

• Within supported VW Indices,
or

• Unsupported or reserved VW
Indices

3 O

No error is reported.

The transaction is completed on the
eSPI bus with Virtual Wire received
being silently discarded without any
effect

NOTES:

1. Invalid command opcode or cycle type refers to unknown command opcode or
cycle type which is not defined by the eSPI Base Specification. This includes
command opcode or cycle type that may be added later to any eSPI Addendum
but not supported by the eSPI agents. Unsupported command opcode or cycle
type refers to command opcode or cycle type which is defined by the eSPI Base
Specification but it is not supported based on specific product requirement.

2. Detection Phase (DP). The error detected falls under one of the Detection Phase.

System Architecture

124 327432-004

3. Required or Optional (R/O). Error conditions marked with Required (R) must be
supported by eSPI slave.

9.2.1.1 No Response

In the case of invalid command, invalid cycle type or CRC error, the boundary of the
command packet is indeterminate.

The eSPI slave must not drive the Response Phase when the boundary of the
command packet cannot be determined.

After the command phase and the Turn-Around time, upon receiving the Response
Code of all 1’s, the eSPI master can deduce that there is either no slave present, or
the slave has encountered error and responded with NO_RESPONSE. The slave does
not drive the response phase in this case and the Response Code of all 1’s is a result
of the weak pull-up on the I/O[n:0] pins.

9.2.1.2 Fatal Error Response

The eSPI slave communicates to the eSPI master that the current transaction has a
serious error by returning a Fatal Error response in the Response Phase, or by
signaling the Fatal Error through the Virtual Wire message.

This could be due to the corresponding command could not be processed or that a
severe error has been detected by the eSPI slaves that resulted in its inability to make
forward progress.

The error conditions with Fatal Error response from slave are as described in Table 23.

Based on the response, the eSPI master may choose to generate a System Error
(SERR) if it is a PCI device or route the error as an interrupt or SMI#. Alternatively,
the eSPI master may choose to take other necessary actions or no action. The
decision taken by the eSPI master in response to Fatal Error is implementation specific
and beyond the scope of the specification.

The Response with Fatal Error comprises a Response, a Status and a CRC. There is
neither Header nor Data field during the Response phase.

System Architecture

327432-004 125

Figure 60: Transaction with FATAL Error Response

9.2.1.3 Non-Fatal Error Response

The eSPI slave returns a Non-Fatal error in response to a command which is
erroneous but does not impede the processing of the command and the forward
progress of the bus.

The error conditions with Non-Fatal Error response from slave are as described in
Table 23.

The intent is to communicate Non-Fatal errors to higher layer protocol stacks for more
robust error recovery.

The behavior of the eSPI master in response to receiving a Non-Fatal Error is
implementation specific and beyond the scope of the specification.

The Response with Non-Fatal Error comprises a Response, a Status and a CRC. There
is neither Header nor Data field during the Response phase.

Figure 61: Transaction with Non-FATAL Error Response

9.2.1.4 Unsuccessful Completion

For non-posted transaction that cannot be completed due to error, the eSPI slave
returns an unsuccessful completion without data.

In the case of multiple split completions, the unsuccessful completion may be returned
in any of the split completion. However, when one of the split completions has an
unsuccessful completion status, the remaining split completions are not returned. The
unsuccessful completion is the last split completion.

CLK

Chip Select#

Data[n:0] CMD HDR
(Optional)

DATA
(Optional)

CRC FATAL_
ERROR CRCSTS

CLK

Chip Select#

Data[n:0] CMD HDR
(Optional)

DATA
(Optional)

CRC
NON_

FATAL_
ERROR

CRCSTS

System Architecture

126 327432-004

The error conditions with unsuccessful completion from slave are as described in
Table 23.

9.2.1.5 Unexpected Chip Select# Deassertion

The deassertion of Chip Select# by eSPI master may be unexpected to eSPI slave. As
an example, such error condition happens when the transaction length intended by
the slave is corrupted on the bus and as a result, an incorrect length is being received
by the master:

1. eSPI master deasserts Chip Select# sooner than slave expects. The slave expects
to send more data but the transaction is ended with Chip Select# deassertion.

2. eSPI master deasserts Chip Select# later than slave expects. The slave detects
more eSPI serial clocks after it has completed the response phase on the bus.

The eSPI slave is required to tri-state the bus tSHQZ after Chip Select# is deasserted.
The eSPI I/O[n:0] pins are expected to be pulled high by the pullup resistors on the
bus. However, for scenario 1, due to time taken to ramp the pin high by the pull-up
resistor when the prior state driven by the slave is ‘0’ before the tri-stating, a false
ALERT# may be detected on I/O[1] if the pin is also functioning as the ALERT# input
in a single master-single slave configuration. Besides causing an unnecessary
GET_STATUS from eSPI master, the spurious ALERT# will not affect the eSPI bus
functionality.

The error condition is detectable by the eSPI master as it will result in a CRC error
detected on the response phase when CRC checking is enabled.

Figure 62: Unexpected Chip Select# Deassertion

COMMAND

CLK

Chip Select#

I/O[n:0] RESPONSE

tSHQZ

I/O[1] I/O[1]

GET_STATUS

I/O[1]

RSP STS

I/O[1]/ALERT#

CRC CRC

I/O[1]

Slave must tri-state
IO[n:0] by tSHQZ

I/O[1]/ALERT# may be ‘0’ (during
response phase) prior to tri-state

I/O[1]/ALERT# is pulled to
‘1’ by pull-up resistor

False ALERT# (active low) is
detected as the pin ramps to ‘1’

GET_STATUS by eSPI master in
response to the false ALERT#

Slave detects unexpected
deassertion of Chip Select#

System Architecture

327432-004 127

9.2.2 Master’s Detected Errors

Table 24: Master’s Detected Errors

Error Condition1 R/O2 Error Type Master’s Handling

Invalid Response Code

(with respect to command)
R Fatal Error

Master terminates the transaction abruptly by
deasserting Chip Select#.

For the corresponding (peripheral, flash access)
channel with error detected:

• Master to return Unsuccessful Completion to
the initiator (such as host CPU) for ANY
outstanding Master-to-Slave non-posted.

• Discard any subsequent completion pulled
from the Slave. (Note 1)

• Discard any subsequent Master-to-Slave
completions. (Note 2)

• A reset to the Slave is required for this
channel part of the software error handling.

Notes:

1. Master-to-Slave non-posted has been
completed with Unsuccessful Completion.

2. To avoid delivering subsequent data to the
Slave as the erroneous response phase may
be associated with a Master-to-Slave
completion (thus it is “lost” from Slave
perspective). Delivering subsequent
completion to the Slave results in data
going out of context.

Invalid Cycle Type

(with respect to command)
R Fatal Error

Response phase CRC Error R Fatal Error

Response Code:
NO_RESPONSE

(After initialization phase)3

R Fatal Error

System Architecture

128 327432-004

Error Condition1 R/O2 Error Type Master’s Handling

Response Code: FATAL_ERROR R Fatal Error

In the case of NO_RESPONSE, Master
terminates the transaction abruptly by
deasserting Chip Select#. If Response Code is
FATAL_ERROR or NON_FATAL_ERROR, Chip
Select# is deasserted normally at the end of the
response phase.

For the corresponding channel with error
detected, if command is a

• Master-to-Slave non-posted. Master to return
Unsuccessful Completion to the requestor

• Master-to-Slave completion. Master to discard
any subsequent completion to the Slave on
this channel. (Note 3) A reset to the Slave is
required for this channel part of the software
error handling.

Notes:

3. To avoid delivering subsequent data to the
Slave as the erroneous response phase is
associated with a Master-to-Slave
completion (thus it is “lost” from Slave
perspective). Delivering subsequent
completion to the slave results in data going
out of context.

Response Code:
NON_FATAL_ERROR

O Non-Fatal Error

Return Unsuccessful Completion to the Slave
for non-posted that requires completion.

Discard posted transaction from the Slave

System Architecture

327432-004 129

Error Condition1 R/O2 Error Type Master’s Handling

Malformed Packet during
Response Phase
Peripheral Channel:
• Payload length > Max

Payload Size (aligned)
• Read request size > Max

Read Request Size
(aligned)

• (Address + Length)
crosses 4KB (aligned)
boundary

Virtual Wire Channel:

• Count > Max Virtual Wire
Count

OOB Channel:

• SMBus Byte Count > Max
Payload Size

Flash Access Channel:

• Payload length > Max
Payload Size

• Read request size > Max
Read Request Size

R Fatal Error

Return Unsuccessful Completion to the Slave for
non-posted that requires completion.
Discard posted transaction from the Slave

Unsupported Cycle Type

(with respect to command)
O Non-fatal Error

Return Unsuccessful Completion to the Slave for
non-posted that requires completion.
Discard posted transaction from the Slave

Unsupported Message Code O Non-fatal Error Discard Message transaction from the Slave

Unsupported Length,
Unsupported Address/Length
alignment,
Out of Range Address/Length
combination

O Non-fatal Error
Return Unsuccessful Completion to the Slave for
non-posted that requires completion.
Discard posted transaction from the Slave

Unsuccessful completion
received

O Non-fatal Error
Forward unsuccessful completion to the
requester

Receive ERROR FATAL Virtual
Wire

R Fatal Error
No additional handling besides error logging and
reporting

Receive ERROR NON FATAL
Virtual Wire

O Non-fatal Error
No additional handling besides error logging
and reporting

Unexpected completion
received (i.e. completion
without non-posted request, or
completion with invalid tag)

O Non-Fatal Error
The transaction is completed on the eSPI bus
with Completion received silently discarded.

System Architecture

130 327432-004

Error Condition1 R/O2 Error Type Master’s Handling

Unsupported or Reserved
Virtual Wire (VW) with Valid
bit set

• Within supported VW
Indices, or

• Unsupported or reserved
VW Indices

O
No error
reported

The transaction is completed on the eSPI bus
with Virtual Wire received being silently
discarded without any effect.

NOTES:

1. Invalid command opcode or cycle type refers to unknown command opcode or
cycle type which is not defined by the eSPI Base Specification. This includes
command opcode or cycle type that may be added later to any eSPI Addendum
but not supported by the eSPI agents. Unsupported command opcode or cycle
type refers to command opcode or cycle type which is defined by the eSPI Base
Specification but it is not supported based on specific product requirement.

2. Required or Optional (R/O). Error conditions marked with Required (R) must be
supported by eSPI master.

3. During initialization phase, the NO_RESPONSE for a GET_CONFIGURATION cycle
indicates that slave is not present on the corresponding Chip Select#. It is not an
error condition.

9.2.2.1 Master’s Error Handling

For eSPI slave initiated posted writes which are unsuccessful, the error is not
communicated back to the initiating slave. The error handling, logging and reporting in
the eSPI master is implementation specific.

For eSPI slave initiated non-posted transactions which are unsuccessful, an
unsuccessful completion will be returned to the eSPI slave. The corresponding error
handling, logging and reporting in the eSPI master is implementation specific.

When an invalid Response Code, an invalid Cycle Type, or a CRC error is detected on
the Response Phase received from eSPI slave, the Response packet boundary is
indeterminate. When this happens, the eSPI master is allowed to stop the clock and
de-assert the Chip Select# at any point to terminate the transaction. The eSPI slave is
required to detect and handle the unexpected deassertion of Chip Select#.

System Architecture

327432-004 131

9.3 Reset

9.3.1 eSPI Reset#

eSPI Reset# is an out-of-band pin used to communicate the interface reset event
between eSPI master and eSPI slave. Unless otherwise specified, the entire eSPI
interface related hardware logic and circuit for all the channels will be reset by eSPI
Reset#, including all the internal queues. Although the eSPI interface is reset by the
eSPI Reset#, the eSPI controller may or may not be reset. It is hardware
implementation specific and outside the scope of the specification.

Platform Reset event is communicated through the PLTRST# virtual wire. Platform
Reset can be used to reset the GPIOs which are used to control the other board
components that share the same reset.

In typical implementation, the eSPI Reset# is the same as Platform Reset. For
Embedded Controller or Baseboard Management Controller, the eSPI Reset# is
connected to the Reset signal of deeper power well compared to Platform Reset.

9.3.2 In-band RESET Command

In-band RESET command intends to recover the eSPI master and slaves such that
both sides are reset to a known set of interface settings to allow communication to re-
establish. The eSPI interface must be still functional in order to transmit and receive
the RESET command.

One example where eSPI master and slaves may go out of synchronization is when
SET_CONFIGURATION from eSPI master to eSPI slave results in an error. As the
transaction does not complete successfully, it is uncertain on the state of the interface
settings after the error.

The in-band RESET command has the following behavior. It is defined such that the
slave is able to detect the In-band RESET command opcode regardless of the I/O
mode, i.e. either in Single, Dual or Quad I/O configuration.

• RESET command opcode is FFh (i.e. all 1's).

• It is sent with the 20MHz speed or lower.

• No CRC byte and thus CRC checking must be ignored.

• The transaction has no response phase from eSPI slave.

• All I/O lines are driven to high ('1') for 16 eSPI clocks and tri-stated at the
deassertion edge of CS#, meeting the tSHQZ Output Disable timing.

When eSPI slave detects the RESET command opcode, it behaves in the following:

• Ignore all the subsequent bits received.

System Architecture

132 327432-004

• Bypass or ignore the CRC checking.

• Wait until CS# deassertion, and assert the in-band reset internally at the CS#
deassertion edge.

The In-band RESET will reset the following slave register settings to the default reset
value:

• Offset 008h-00Bh: General Capabilities and Configurations

All other slave registers are not reset by the In-band RESET, and they must retain
their values across the In-band RESET.

Figure 63: In-band RESET Command

9.4 Power Management Event (PME)
Power Management Event (PME) is used by eSPI slaves to request for wake up from
low power states.

This event is communicated as in-band message through the Virtual Wire channel. The
assertion of this event is not qualified with PCI Power Management Configuration
registers.

9.5 Power Sequencing & Initialization
This section describes the entry and exit flows for various platform power
management states. The actual flow may differ slightly from one implementation to
another. Implementers should refer to the respective component specification for the
exact flows.

CLK

Chip Select#

Data[0]

Data[1]

Data[2]

Data[3]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

System Architecture

327432-004 133

9.5.1 Exit from G3
The following sequence of steps will be performed by the Enhanced Serial Peripheral
Interface (eSPI) controller upon deassertion of eSPI Reset# on exit from G3:

1. By default, eSPI master and slaves operate in low speed mode with a clock
frequency of tINIT-FREQ.

2. By default, eSPI master and slaves operate in single input (MISO) and single
output mode (MOSI).

3. eSPI master will wait for tINIT from eSPI Reset# de-assertion before starting the
first operation on the bus.

4. eSPI master initiates a GET_CONFIGURATION to discover specific capabilities of
the eSPI slaves.

a. The mechanism by which the eSPI master knows which Chip Select# and
Alert# pin correspond to specific eSPI slave is implementation specific.

b. GET_CONFIGURATION is initiated.

5. eSPI master evaluates the discovered capabilities and performs
SET_CONFIGURATION command to the eSPI slaves to configure the capabilities
based on supported configurations.

a. To reduce the initialization time, eSPI master could configure the eSPI
slaves to run at a higher supported bandwidth.

6. The Virtual Wire channel is then enabled, if supported

7. Once the Flash controller is ready, the Flash Access Channel is enabled if
supported.

8. Chipset waits for the SLAVE_BOOT_LOAD_DONE Virtual Wire message from eSPI
slave before continuing the exit sequence. eSPI slave must send the
SLAVE_BOOT_LOAD_DONE message regardless of whether flash access channel
is supported. SLAVE_BOOT_LOAD_STATUS must be valid at the same time or
prior to the SLAVE_BOOT_LOAD_DONE Virtual Wire.

9. Chipset sends in-band Virtual Wire messages to communicate the SLP_S5#,
SLP_S4# and SLP_S3# de-assertion as part of the power up sequence.

10. Chipset sends SUS_STAT# Virtual Wire message to eSPI slave to communicate
SUS_STAT# de-assertion.

11. Once the core well is up and out of reset, the corresponding PLTRST# deassertion
message is sent from Chipset to eSPI slave.

12. The eSPI Peripheral Channel is then enabled if supported and cycles can then be
initiated by both the master and slaves through this channel.

 §

	1 Glossary
	2 Introduction
	2.1 Requirements

	3 Architecture Overview
	3.1 System Topology
	3.2 Architecture Descriptions
	3.3 Pin Descriptions

	4 Bus Protocol
	4.1 Basic Protocol
	4.2 Command Phase
	4.3 Turn-Around (TAR)
	4.4 Response Phase
	4.4.1 Response
	4.4.2 Status

	4.5 Alert Phase
	4.6 Get Status Command
	4.7 Get Configuration and Set Configuration Command
	4.8 Non-Posted Transaction
	4.9 Posted Transaction
	4.10 WAIT STATE

	5 Transaction Layer
	5.1 Cycle Types and Packet Format
	5.1.1 Cycle Types
	5.1.2 Tag
	5.1.3 Length
	5.1.4 Address
	5.1.5 Data

	5.2 Channels
	5.2.1 Peripheral Channel
	5.2.1.1 Latency Tolerance Reporting (LTR) Message

	5.2.2 Virtual Wires Channel
	5.2.2.1 Virtual Wire Index
	5.2.2.2 System Event Virtual Wires
	5.2.2.3 Communicating Timing Event on Virtual Wires
	5.2.2.4 Interrupt Event
	5.2.2.5 General-Purpose I/O Expander

	5.2.3 OOB (Tunneled SMBus) Message Channel
	5.2.4 Run-time Flash Access Channel
	5.2.4.1 Master Attached Flash Sharing
	5.2.4.2 Slave Attached Flash Sharing

	5.3 Slave Buffer Management
	5.4 Transaction Ordering Rule
	5.5 Zero Length Read and Write

	6 Link Layer
	6.1 Single I/O, Dual I/O and Quad I/O Modes
	6.2 Cyclic Redundancy Check (CRC)

	7 Slave Registers
	7.1 Status Register
	7.2 Capabilities and Configuration Registers
	7.2.1.1 Offset 00h: Reserved
	7.2.1.2 Offset 04h: Device Identification
	7.2.1.3 Offset 08h: General Capabilities and Configurations
	7.2.1.4 Offset 10h: Channel 0 Capabilities and Configurations
	7.2.1.5 Offset 20h: Channel 1 Capabilities and Configurations
	7.2.1.6 Offset 30h: Channel 2 Capabilities and Configurations
	7.2.1.7 Offset 40h: Channel 3 Capabilities and Configurations

	8 Operating Specification
	8.1 Electrical Specification
	8.2 Timing Parameters

	9 System Architecture
	9.1 Interrupts
	9.2 Error Detection and Handling
	9.2.1 Slave’s Detected Errors
	9.2.1.1 No Response
	9.2.1.2 Fatal Error Response
	9.2.1.3 Non-Fatal Error Response
	9.2.1.4 Unsuccessful Completion
	9.2.1.5 Unexpected Chip Select# Deassertion

	9.2.2 Master’s Detected Errors
	9.2.2.1 Master’s Error Handling

	9.3 Reset
	9.3.1 eSPI Reset#
	9.3.2 In-band RESET Command

	9.4 Power Management Event (PME)
	9.5 Power Sequencing & Initialization
	9.5.1 Exit from G3

